Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9322–9329 | Cite as

Can in vivo surface dental enamelmicrobiopsies be used to measure remote lead exposure?

  • Kelly Polido Kaneshiro Olympio
  • Manuel Fernando Gonzalez Huila
  • Cristiane de Almeida Baldini Cardoso
  • Ana Paula Sacone da Silva Ferreira
  • Adrielly Garcia Ortiz
  • Henrique Eisi Toma
  • Ricardo Henrique Alves da Silva
  • Maciel Santos Luz
  • Maria Regina Alves Cardoso
  • Gislayne Aparecida Rodrigues Kelmer
  • Pedro Vitoriano de Oliveira
  • Etelvino José Henriques Bechara
  • Wanda Maria Risso Günther
  • Marília Afonso Rabelo Buzalaf
Research Article
  • 120 Downloads

Abstract

Measuring lead in the surface dental enamel (SDE) using biopsies is a rapid, safe, and painless procedure. The dental enamel lead levels (DELLs) decrease from the outermost superficial layer to the inner layer of dental enamel, which becomes crucial for the biopsy depth (BD) measurement. However, whether the origin of lead found in SDE is fully endogenous is not yet established. There is also controversy about the biopsy protocol. The aims of this study were to investigate if DELLs are altered by extrinsic contamination (A) and to evaluate the real geometric figure formed by the erosion provoked by biopsy procedure and the respective BD in SDE (B). To accomplish the aim A, lead from 90 bovine incisor crowns lead was determined by graphite furnace atomic absorption spectrometer as a function of exposure time and lead concentration. Two biopsies were performed in each tooth, before and after lead exposure. Six 15-tooth groups differed by exposure time (1 or 30 min) and lead concentrations (A. 0 mg/L—placebo, B. 0.01 mg/L—standard for drinking water, or C. 0.06 mg/L—concentration found in contaminated groundwater). Phosphorus was determined by an inductively coupled plasm optical emission spectrometer to quantify the enamel removed. To compare intakes/losses of lead in SDE among the groups, values of DELL differences between before and after lead exposure were compared by ANOVA (p < 0.05). To attain the objective B, one extracted human permanent tooth was studied by confocal Raman microscopy. Lead measurements and the surface profile were determined. There was no difference in DELL among the groups (p = 0.964). The biopsy bottom surface area, analyzed by microscopy, showed an irregular area, with regions of peaks and valleys, where areas with depth ranging from 0.2 (peaks) to 1.8 μm (valleys) (± 0.1 μm) could be found. BD carried out in vivo is commonly calculated using the cylinder height formula. The real BD was shown to be very similar to already published data. In conclusion, the SDE of erupted teeth does not seem to be susceptible to environmental lead intake, being thus reliable to measure remote exposures to lead.

Keywords

Lead exposure Dental enamel Tooth microbiopsies Tooth Raman spectroscopy Biopsy protocol Biomarker 

Notes

Financial support

Petrobrás, FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—grants 01/09641-1 and 06/56530-4); CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico); and the Projeto Milênio Redoxoma. KPKO was recipient of a fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Compliance with ethical standards

The Institutional Review Board of Bauru Dental School of the University of São Paulo reviewed and approved the protocol adopted to carry out the present work (Protocol 26/2010).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J (2016) Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–11 years of age: CHMS 2007–2009. Neurotoxicology 54:89–98.  https://doi.org/10.1016/j.neuro.2016.03.014. CrossRefGoogle Scholar
  2. Brasil. Ministério da saúde. Portaria n° 518, de 25 de março de 2004 (2004) Estabelece os procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade, e dá outras providências http://dtr2004saudegovbr/dab/docs/legislacao/portaria518_25_03_04pdf Acessed 8 March 2016.
  3. Brudevold F, Reda A, Aasenden R, Bakhos Y (1975) Determination of trace elements in surface enamel of human teeth by a new biopsy procedure. Arch Oral Biol 20(10):667–673.  https://doi.org/10.1016/0003-9969(75)90135. CrossRefGoogle Scholar
  4. Brudevold F, Aasenden R, Srinivasian BN, Bakhos Y (1977) Lead in enamel and saliva, dental caries and the use of enamel biopsies for measuring past exposure to lead. J Dent Res 56(10):1165–1171.  https://doi.org/10.1177/00220345770560100701 CrossRefGoogle Scholar
  5. Budd P, Montgomery J, Cox A, Krause P, Barreiro B, Thomas RG (1998) The distribution of lead within ancient and modern human teeth: implications for long-term and historical exposure monitoring. Sci Total Environ 220(2-3):121–136.  https://doi.org/10.1016/S0048-9697(98)00244-7 CrossRefGoogle Scholar
  6. Budd P, Montgomery J, Evans J, Barreiro B (2000) Human tooth enamel as a record of the comparative lead exposure of prehistoric and modern people. Sci Total Environ 263(1-3):1–10.  https://doi.org/10.1016/S0048-9697(00)00604-5 CrossRefGoogle Scholar
  7. Budd P, Montgomery J, Evans J, Trickett M (2004) Human lead exposure in England from approximately 5500 BP to the 16th century AD. Sci Total Environ 318(1-3):45–58.  https://doi.org/10.1016/S0048-9697(03)00357-7 CrossRefGoogle Scholar
  8. Cleymaet R, Quartier E, Slop D, Retief DH, Smeyers-Verbek J, Coomans D (1991) Model for assessment of lead content in human surface enamel. J Toxicol Environ Health 32(2):111–127.  https://doi.org/10.1080/15287399109531472 CrossRefGoogle Scholar
  9. Dean MC, Scandrett AE (1996) The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Arch Oral Biol 41(3):233–241.  https://doi.org/10.1016/0003-9969(95)00137-9 CrossRefGoogle Scholar
  10. Dietrich KN, Ris MD, Succop PA, Berger OG, Bornschein RL (2001) Early exposure to lead and juvenile delinquency. Neurotoxicol Teratol 23(6):511–518.  https://doi.org/10.1016/S0892-0362(01)00184-2 CrossRefGoogle Scholar
  11. Fejerskov O, Nyvad B, Kidd E (2003) Dental caries: the disease and its clinical management. Munksgaard, Wiley BlackwellGoogle Scholar
  12. Heurich E, Beyer M, Jandt KD, Reichert J, Herold V, Schnabelrauch M, Sigusch BW (2010) Quantification of dental erosion—a comparison of stylus profilometry and confocal laser scanning microscopy (CLSM). Dent Mater 26(4):326–336.  https://doi.org/10.1016/j.dental.2009.12.001 CrossRefGoogle Scholar
  13. Levy FM, Rios D, Buzalaf MAR, Magalhães AC (2014) Efficacy of TiF4 and NaF varnish and solution: a randomized in situ study on enamel erosive–abrasive wear. Clin Oral Invest 18(4):1097–1102.  https://doi.org/10.1007/s00784-013-1096-y CrossRefGoogle Scholar
  14. Mann C, Ranjitkar S, Lekkas D, Hall C, Kaidonis JA, Townsend GC, Brook AH (2014) Three-dimensional profilometric assessment of early enamel erosion simulating gastric regurgitation. J Dent 42(11):1411–1421.  https://doi.org/10.1016/j.jdent.2014.06.011 CrossRefGoogle Scholar
  15. Molina GF, Almeida GRC, Guerra CS, Cury JA, Almeida AP, Barroso RC, Gerlach RF (2011) Lead deposition in bovine enamel during a pH-cycling regimen simulating the caries process. Caries Res 45(5):469–474.  https://doi.org/10.1159/000330602 CrossRefGoogle Scholar
  16. Needleman HL, McFarland C, Ness RB, Fienberg SE, Tobin MJ (2002) Bone lead levels in adjudicated delinquents. A case control study. Neurotoxicol Teratol 24(6):711–717.  https://doi.org/10.1016/S0892-0362(02)00269-6. CrossRefGoogle Scholar
  17. Olympio KPK, Gonçalves C, Günther WM, Bechara EJ (2009) Neurotoxicity and aggressiveness triggered by low-level lead in children: a review. Rev Panam Salud Publ 26(3):266–275.  https://doi.org/10.1590/S1020-49892009000900011 CrossRefGoogle Scholar
  18. Olympio KPK, Naozuka J, Magalhães AC, Garcia MVP, Oliveira PV, Buzalaf MAR, Bechara EJH, Gunther WMR (2010a) Microbiopsies of surface dental enamel as a tool to measure body lead burden. J Toxicol Environ Health 73(9):627–636.  https://doi.org/10.1080/1528739090357822. CrossRefGoogle Scholar
  19. Olympio KPK, Naozuka J, Oliveira PV, Cardoso MRA, Bechara EJH, Gunther WMR (2010b) Association of dental enamel lead levels with risk factors for environmental exposure. Rev Saude Publica 44(5):851–858.  https://doi.org/10.1590/S0034-89102010000500010 CrossRefGoogle Scholar
  20. Olympio KPK, Oliveira PV, Naozuka J, Cardoso MR, Marques AF, Günther WM, Bechara EJ (2010c) Surface dental enamel lead levels and antisocial behavior in Brazilian adolescents. Neurotoxicol Teratol 32(2):273–279.  https://doi.org/10.1590/S1020-49892009000900011. CrossRefGoogle Scholar
  21. Rabinowitz MB (1995) Relating tooth and blood lead levels in children. Bull Environ Contam Toxicol 55(6):853–857.  https://doi.org/10.1111/j.1365-263X.2010.01032.x. CrossRefGoogle Scholar
  22. Renz H, Schaefer V, Duschner H, Radlanski RJ (1997) Incremental lines in root cementum of human teeth: an approach to their ultrastructural nature by microscopy. Adv Dent Res 11(4):472–477.  https://doi.org/10.1177/08959374970110041501 CrossRefGoogle Scholar
  23. Souza BM, Comar LP, Vertuan M, Neto CF, Buzalaf MAR, Magalhães AC (2015) Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res 49(5):499–507.  https://doi.org/10.1159/000438466 CrossRefGoogle Scholar
  24. WHO. World Health Organization. International Programme on Chemical Safety. Lead. http://www.who.int/ipcs/assessment/public_health/lead/en/ Acessed 8 March 2016.
  25. Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD, Lanphear BP, Ho M, Rae MN (2008) Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med 5(5):732–740.  https://doi.org/10.1371/journal.pmed.0050101 CrossRefGoogle Scholar
  26. Wright JP, Boisvert D, Vaske J (2009) Blood lead levels in early childhood predict adulthood psychopathy. Youth Violence Juvenile Justice 7(3):208–222.  https://doi.org/10.1177/1541204009333827 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017
corrected publication March/2018

Authors and Affiliations

  • Kelly Polido Kaneshiro Olympio
    • 1
  • Manuel Fernando Gonzalez Huila
    • 2
  • Cristiane de Almeida Baldini Cardoso
    • 3
  • Ana Paula Sacone da Silva Ferreira
    • 1
  • Adrielly Garcia Ortiz
    • 4
  • Henrique Eisi Toma
    • 2
  • Ricardo Henrique Alves da Silva
    • 4
  • Maciel Santos Luz
    • 5
  • Maria Regina Alves Cardoso
    • 6
  • Gislayne Aparecida Rodrigues Kelmer
    • 2
  • Pedro Vitoriano de Oliveira
    • 2
  • Etelvino José Henriques Bechara
    • 2
  • Wanda Maria Risso Günther
    • 1
  • Marília Afonso Rabelo Buzalaf
    • 7
  1. 1.Departamento de Saúde Ambiental, Faculdade de Saúde PúblicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  3. 3.Programa de Pós-Graduação em Odontologia, área de concentração OdontopediatriaUniversidade Cruzeiro do Sul (UNICSUL)São PauloBrazil
  4. 4.Departamento de Estomatologia, Saúde Coletiva e Odontologia Legal, Faculdade de Odontologia de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  5. 5.Centro de Tecnologia em Metalurgia e Materiais, Laboratório de Processos Metalúrgicos (CTMM/LPM)Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT)São PauloBrazil
  6. 6.Departamento de Epidemiologia, Faculdade de Saúde PúblicaUniversidade de São PauloSão PauloBrazil
  7. 7.Departamento de Ciências Biológicas, Faculdade de Odontologia de BauruUniversidade de São PauloBauruBrazil

Personalised recommendations