Skip to main content

Advertisement

Log in

Nitrate trends in groundwater of the Campania region (southern Italy)

  • Groundwater under threat from diffuse contaminants: improving on-site sanitation, agriculture and water supply practices
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Environmental Protection Agency of the Campania region in Italy (ARPAC) manages a groundwater quality monitoring network. For almost all the polluted waters, the key parameter driving the classification is the concentration of nitrate; hence, the Campania region, in coherence with the EU regulations, outlined the vulnerable areas and undertook remediation policies. The best groundwater quality is recorded for carbonate aquifers of the Apennine chain; on the contrary, the Tyrrhenian coastal plains are affected by severe contamination, with a locally very contaminated groundwater of the shallow and also the deeper aquifers. The study is especially focused on a large coastal plain of Campania region, where nitrate concentration sometimes exceeds 200 mg/L. The study, based on almost 200 sampling points for the whole region during the period 2003–2015 (approx two samples per year), verified the effectiveness of the groundwater monitoring network, the present distribution of nitrate in groundwater, and the evolution of nitrate trends at different scales: regional, groundwater body, and single well, using spatial and time series statistical approaches. Significant variations in contamination evolution within the study area have been observed and the correlation with land use has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APAT Irsa Cnr (2003) Metodi analitici per le acque. Manuali e linee guida, 29, 2003. In Italian

  • AquaTerra (2004) Integrated modelling of the river-sediment-soil-groundwater system: advanced tools for the management of catchment areas and river basins in the context of global change. Integrated Project of the 6th EU RTD Framework Programme Project no. 505428. AquaTerra. http://www.euaquaterra. de/. Cited 23 June 2007

  • Arauzo M, Martínez-Bastida JJ (2015) Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: groundwater vulnerability vs. groundwater pollution. Environ Earth Sci 73(12):8271–8286. https://doi.org/10.1007/s12665-014-3989-8

    Article  CAS  Google Scholar 

  • Babiker IS, Mohamed MAA, Terao H, Kato K, Ohta K (2004) Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ Int 29(8):1009–1017. https://doi.org/10.1016/S0160-4120(03)00095-3

    Article  CAS  Google Scholar 

  • Baker L (1992) Introduction to nonpoint source pollution in the United States and prospects for wetland use. Ecol Eng 1(1-2):1–26. https://doi.org/10.1016/0925-8574(92)90023-U

    Article  Google Scholar 

  • Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991–2003. Environ Sci Technol 44(13):4988–4997. https://doi.org/10.1021/es100546y

    Article  CAS  Google Scholar 

  • Canter LW (1997) Nitrates in groundwater. Lewis Publishers, ISBN 0-87371-569-1. 263 pp

  • Capri E, Civita M, Corniello A, Cusimano G, De Maio M, Ducci D, Fait G, Fiorucci A, Hauser S, Pisciotta A, Pranzini G, Trevisan M, Delgado Huertas A, Ferrari F, Frullini R, Nisi B, Offi M, Vaselli O, Vassallo M (2009) Assessment of nitrate contamination risk: the Italian experience. J Geochem Explor 102(2):71–86. https://doi.org/10.1016/j.gexplo.2009.02.006

    Article  CAS  Google Scholar 

  • Chica-Olmo M, Pardo-Igúzquiza E, Luque-Espinar A, Rodríguez-Galiano V, Chica-Rivas L (2014) Quantitative risk management of groundwater contamination by nitrates using indicator geostatistics. Mathematics of Planet Earth. Springer, Berlin Heidelberg, pp 533–536

    Google Scholar 

  • CLC (2006) Copernicus land monitoring services. http://land.copernicus.eu/pan-european/corine-land-cover/clc-2006

  • CLC (2012) Copernicus land monitoring services. http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012

  • Corniello A, Ducci D (2014) Hydrogeochemical characterization of the main aquifer of the “Litorale Domizio-Agro Aversano NIPS” (Campania—southern Italy). J Geochem Explor 137:1–10. https://doi.org/10.1016/j.gexplo.2013.10.016

    Article  CAS  Google Scholar 

  • Corniello A, Ducci D, Ruggieri G (2007) Areal identification of groundwater nitrate contamination sources in periurban areas. J Soils Sediments 7(3):159–166. https://doi.org/10.1065/jss2007.03.213

    Article  CAS  Google Scholar 

  • D.lgs. 30/2009 Italy: transposition of Directive 2006/118/EC, of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration

  • D.M. Env. 6 July 2016 Italy: transposition of Directive 2014/80/EC, modifying the annex II of the Directive 2006/118/EC

  • Dalgaard T, Bienkowski JF, Bleeker A, Drouet JL, Durand P, Dragosits U, Frumau A, Hutchings NJ, Kedziora A, Magliulo V, Olesen JE, Theobald MR, Maury O, Akkal N, Cellier P (2012) Farm nitrogen balances in six European agricultural landscapes—a method for farming system assessment, emission hotspot identification, and mitigation measure evaluation. Biogeosci Discuss 9(7):8859–8904. https://doi.org/10.5194/bgd-9-8859-2012

    Article  Google Scholar 

  • De Simone L, Howes B (1998) N transport and transformations in a shallow aquifer receiving wastewater discharge: a mass balance approach. Water Res Res 34(2):271–285

    Article  Google Scholar 

  • Drake VM, Bauder JW (2005) Ground water nitrate-nitrogen trends in relation to urban development, Helena, Montana, 1971–2003. Ground Water Monit Remediat 25(2):118–130. https://doi.org/10.1111/j.1745-6592.2005.0017.x

    Article  CAS  Google Scholar 

  • Drinking Water Directive (1998) On the quality of water intended for human consumption. Off. J. Eur. Communities, L330.

  • Ducci D, Onorati G (1993) Analisi di una lunga serie di dati piezometrici in Piana Campana. Quaderni di Tecniche di Protezione Ambientale - Protezione delle acque sotterranee 49:339-357, Pitagora, Bologna

  • Ducci D, Condesso De Melo MT, Preziosi E, Sellerino M, Parrone D, Ribeiro L (2016) Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci Total Environ 569–570:569–584

    Article  Google Scholar 

  • Erisman JW, van Grinsven H, Grizzetti B, Bouraoui F, Powlson D, Sutton MA, Bleeker A, Reis S (2011) The European nitrogen problem in a global perspective. In: Sutton MA, Howard CM, Erisman JW, Billen

  • Grath J, Scheidleder A, Uhlig S, Weber K, Kralik M, Keimel T, et al. (2001) The EU Water Framework Directive: statistical aspects of the identification of groundwater pollution trends, and aggregation of monitoring results. Final Report. Austrian Federal Ministry of Agriculture and Forestry, Environment and Water Management (Ref.: 41.046/01-IV1/00 and GZ 16 2500/2–1/6/00), European Commission (Grant Agreement Ref.: Subv 99/130794), Vienna: European Commission

  • Grizzetti B, Bouraoui F, Billen G, van Grinsven H, Cardoso AC, Thieu V, Garnier J, Curtis C, Howarth RW, Johnes P (2011) Nitrogen as a threat to European water quality, 379–404

  • Gupta I, Salunkhe A, Rohra N, Kumar R (2011) Groundwater quality in Maharashtra, India: focus on nitrate pollution. J Environ Sci Eng 53(4):453–462

    CAS  Google Scholar 

  • Hansen B, Thorling L, Dalgaard T, Erlandsen M (2010) Trend reversal of nitrate in Danish groundwater—a reflection of agricultural practices and nitrogen surpluses since 1950. Environ Sci Technol 45(1):228–234

    Article  Google Scholar 

  • Hansen B, Dalgaard T, Thorling L, Sørensen B, Erlandsen M (2012) Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence. Biogeosciences 9(8):3277–3286. https://doi.org/10.5194/bg-9-3277-2012

    Article  CAS  Google Scholar 

  • Imbrenda V, D’Emilio M, Lanfredi M, Ragosta M, Simoniello T (2012) Indicators of land degradation vulnerability due to anthropic factors: tools for an efficient planning. Geographic In-formation Analysis for Sustainable Development and Economic Planning: New Tech-ologies Hershey: IGI Global, 87–101

  • ISO 10304-2 (1995) Water quality—determination of dissolved anions by liquid chromatography of ions—part 2: determination of bromide, chloride, nitrate, nitrite, orthophosphate and sulfate in waste water

  • ISO 5667-11 (2009) Water quality—sampling—part 11: guidance on sampling of groundwater

  • Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289(1-4):128–144. https://doi.org/10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Katsoulos PD, Karatzia MA, Polizopoulou Z, Florou-Paneri P, Karatzias H (2015) Effects of prolonged consumption of water with elevated nitrate levels on certain metabolic parameters of dairy cattle and use of clinoptilolite for their amelioration. Environ Sci Pollut Res 22(12):9119–9126. https://doi.org/10.1007/s11356-014-4060-8

    Article  CAS  Google Scholar 

  • Kendall M (1975) Multivariate analysis. Charles Griffin Co. LTD, London 210 pp

    Google Scholar 

  • Kent R, Landon MK (2013) Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use. Sci Total Environ 452:125–136

    Article  Google Scholar 

  • Kim KY, Seong H, Kim T, Park KH, Woo NC, Park YS, Park WB (2006) Tidal effects on variations of fresh–saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). J Hydrol 330(3):525–542. https://doi.org/10.1016/j.jhydrol.2006.04.022

    Article  Google Scholar 

  • Landon MK, Green CT, Belitz K, Singleton MJ, Esser BK (2011) Distribution of reduction oxidation conditions and changes in nitrate concentrations over time in ground-water, Central-Eastside San Joaquin Valley, California. Hydrogeol J 19(6):1203–1224. https://doi.org/10.1007/s10040-011-0750-1

    Article  CAS  Google Scholar 

  • Lee JY, Lee KK (2003) Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer. Environ Pollut 126(2):201–212. https://doi.org/10.1016/S0269-7491(03)00187-8

    Article  CAS  Google Scholar 

  • Liu A, Ming J, Ankumah RO (2005) Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 346(1-3):112–120. https://doi.org/10.1016/j.scitotenv.2004.11.019

    Article  CAS  Google Scholar 

  • Livingston ML, Cory DC (1998) Agricultural nitrate contamination of ground water: an evaluation of environmental policy. J Am Water Resour Assoc 34(6):1311–1317. https://doi.org/10.1111/j.1752-1688.1998.tb05433.x

    Article  CAS  Google Scholar 

  • Lord I, Anthony SG (2002) Agricultural nitrogen balance and water quality in the UK. Soil Use Manag 18(4):363–369

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric test against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Melian R, Myrlian N, Gouriev A, Moraru C, Radstake F (1999) Groundwater quality and rural drinking-water supplies in the Republic of Moldova. Hydrogeol J 7(2):188–196. https://doi.org/10.1007/s100400050191

    Article  Google Scholar 

  • Nemčić-Jurec J, Mesić M, Bašic F, Kisić I, Zgorelec Z (2007) Nitrate concentration in drinking water from wells at three different locations in northwest Croatia. Cereal Res Commun 35(2):845–848. https://doi.org/10.1556/CRC.35.2007.2.170

    Article  CAS  Google Scholar 

  • Nemčić-Jurec J, Konjačić M, Jazbec J (2013) Monitoring of nitrates in drinking water from agricultural and residential areas of Podravina and Prigorje (Croatia). Environ Monit Assess 185(11):9509–9520. https://doi.org/10.1007/s10661-013-3269-1

    Article  CAS  Google Scholar 

  • Nitrate Directive (1991) 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal L, 375(31), 12.

  • Pardo-Igúzquiza E, Chica-Olmo M, Luque-Espinar JA, Rodríguez-Galiano V (2015) Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates. Sci Total Environ 532:162–175. https://doi.org/10.1016/j.scitotenv.2015.06.004

    Article  CAS  Google Scholar 

  • PGA (2016). Distretto idrografico dell’Appennino meridionale - Piano di gestione delle acque ciclo 2015–2021. 459 pp. In Italian

  • Re V, Sacchi E, Kammoun S, Tringali C, Trabelsi R, Zouari K, Daniele S (2017) Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Sci Total Environ 593:664–676

    Article  Google Scholar 

  • Sacco D, Offi M, De Maio M, Grignani C (2007) Groundwater nitrate contamination risk assessment: a comparison of parametric systems and simulation modelling. Am J Environ Sci 3(3):117–125

    Article  CAS  Google Scholar 

  • Schilling KE, Wolter CF (2001) Contribution of base flow to nonpoint source pollution loads in an agricultural watershed. Ground Water 39(1):49–58. https://doi.org/10.1111/j.1745-6584.2001.tb00350.x

    Article  CAS  Google Scholar 

  • Schroeder JJ, Scholefield D, Cabral F, Hofman G (2004) The effect of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation. Environ Sci Pol 7(1):15–23. https://doi.org/10.1016/j.envsci.2003.10.006

    Article  CAS  Google Scholar 

  • Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci 110(45):18185–18189

    Article  CAS  Google Scholar 

  • Su X, Wang H, Zhang Y (2013) Health risk assessment of nitrate contamination in groundwater: a case study of an agricultural area in Northeast China. Water Res Manag 27(8):3025–3034

    Article  Google Scholar 

  • Trivedi HB, Vediya SD (2012) Assessment of nitrate contamination of the groundwater samples in Bhiloda Taluka of Sabarkantha district, Gujarat. Int J Pharm Life Sci 3(11):2103–2106

    CAS  Google Scholar 

  • U.S. EPA (2013) Relation between nitrate in water wells and potential sources in the Lower Yakima Valley, Washington. U.S. Environmental Protection Agency, EPA-910-R-13-004

  • UE (2001) Annex 1 to final report—user guide GWstat. Quo data GmbH Gesellshaft für Qualitätsmanagement und Statistik, Dresden

    Google Scholar 

  • US EPA (2000) Drinking water standards and health advisories. U.S. Environmental Protection Agency. EPA-822-B-00-001

  • van Grinsven HJM, Rabl A, de Kok TM (2010) Estimation of incidence of social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment. Environ Health Glob 9(1):58. https://doi.org/10.1186/1476-069X-9-58

    Article  CAS  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324(5934):1519–1520. https://doi.org/10.1126/science.1170261

    Article  CAS  Google Scholar 

  • Zhang Q, Liu C, Xu CY, Xu Y, Jiang T (2005) Observed trends of annual maximum water level and streamflow during the past 130 years in the Yangtze River basin, China. J Hydrol 324:255–265

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor Dr. Philippe Garrigues and the three anonymous reviewers for their constructive and helpful comments and suggestions, which allowed us to improve the presentation of the results of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Ducci.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducci, D., Della Morte, R., Mottola, A. et al. Nitrate trends in groundwater of the Campania region (southern Italy). Environ Sci Pollut Res 26, 2120–2131 (2019). https://doi.org/10.1007/s11356-017-0978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0978-y

Keywords

Navigation