Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 28, pp 27676–27692 | Cite as

Analogies and differences among bacterial and viral disinfection by the photo-Fenton process at neutral pH: a mini review

  • Stefanos GiannakisEmail author
New Challenges in the Application of Advanced Oxidation Processes

Abstract

Over the last years, the photo-Fenton process has been established as an effective, green alternative to chemical disinfection of waters and wastewaters. Microorganisms’ inactivation is the latest success story in the application of this process at near-neutral pH, albeit without clearly elucidated inactivation mechanisms. In this review, the main pathways of the combined photo-Fenton process against the most frequent pathogen models (Escherichia coli for bacteria and MS2 bacteriophage for viruses) are analyzed. Firstly, the action of solar light is described and the specific inactivation mechanisms in bacteria (internal photo-Fenton) and viruses (genome damage) are presented. The contribution of the external pathways due to the potential presence of organic matter in generating reactive oxygen species (ROS) and their effects on microorganism inactivation are discussed. Afterwards, the effects of the gradual addition of Fe and H2O2 are assessed and the differences among bacterial and viral inactivation are highlighted. As a final step, the simultaneous addition of both reagents induces the photo-Fenton in the bulk, focusing on the differences induced by the homogeneous or heterogeneous fraction of the process and the variation among the two respective targets. This work exploits the accumulated evidence on the mechanisms of bacterial inactivation and the scarce ones towards viral targets, aiming to bridge this knowledge gap and make possible the further application of the photo-Fenton process in the field of water/wastewater treatment.

Keywords

E. coli MS2 coliphage virus Photo-Fenton Advanced oxidation process Water and wastewater disinfection Natural organic matter (NOM) 

Abbreviations

ATP

Adenosine tri-phosphate

CBS

Carbonate buffer solution

CPC

Compound parabolic collector

DMSO

Dimethyl sulfoxide

DOM

Dissolved organic matter

ICP-MS

Inductively coupled plasma mass spectrometry

LMCT

Ligand-to-metal charge transfer

NOM

Natural organic matter

ROS

Reactive oxygen species

RPR

Raceway pond reactors

SODIS

Solar disinfection

Notes

Funding information

Stefanos Giannakis would like to acknowledge the European project WATERSPOUTT H2020-Water-5c-2015 (GA 688928) for the financial support.

References

  1. Aguayo D, Pacheco N, Morales EH, Collao B, Luraschi R, Cabezas C, Calderón P, González-Nilo F, Gil F, Calderón IL (2015) Hydrogen peroxide and hypochlorous acid influx through the major S. typhimurium porin OmpD is affected by substitution of key residues of the channel. Arch Biochem Biophys 568:38–45.  https://doi.org/10.1016/j.abb.2015.01.005 CrossRefGoogle Scholar
  2. Allwood PB, Malik YS, Hedberg CW, Goyal SM (2003) Survival of F-specific RNA coliphage, feline calicivirus, and Escherichia coli in water: a comparative study. Appl Environ Microbiol 69(9):5707–5710.  https://doi.org/10.1128/AEM.69.9.5707-5710.2003 CrossRefGoogle Scholar
  3. Ananthaswamy H, Eisenstark A (1976) Near-UV-induced breaks in phage DNA: sensitization by hydrogen peroxide (a tryptophan photoproduct). Photochem Photobiol 24(5):439–442.  https://doi.org/10.1111/j.1751-1097.1976.tb06851.x CrossRefGoogle Scholar
  4. Armanious A, Münch M, Kohn T, Sander M (2016) Competitive co-adsorption dynamics of viruses and dissolved organic matter to positively charged sorbent surfaces. Environ Sci TechnolGoogle Scholar
  5. Bae J, Schwab KJ (2008) Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl Environ Microbiol 74(2):477–484.  https://doi.org/10.1128/AEM.02095-06 CrossRefGoogle Scholar
  6. Bandala ER, González L, Sanchez-Salas JL, Castillo JH (2012) Inactivation of Ascaris eggs in water using sequential solar driven photo-Fenton and free chlorine. J Water Health 10(1):20–30.  https://doi.org/10.2166/wh.2011.034 CrossRefGoogle Scholar
  7. Bandara J, Pulgarin C, Peringer P, Kiwi J (1997) Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor. J Photochem Photobiol A Chem 111(1-3):253–263.  https://doi.org/10.1016/S1010-6030(97)00249-9 CrossRefGoogle Scholar
  8. Bensasson R, Land E, Truscott T (1993) Excited states and free radicals in biology and medicine: contributions from flash photolysis and pulse radiolysis. TokyoGoogle Scholar
  9. Bernabeu A, Vicente R, Peribáñez M, Arques A, Amat A (2011) Exploring the applicability of solar driven photocatalytic processes to control infestation by zebra mussel. Chem Eng J 171(2):490–494.  https://doi.org/10.1016/j.cej.2011.04.009 CrossRefGoogle Scholar
  10. Bischof JC, He X (2006) Thermal stability of proteins. Ann N Y Acad Sci 1066:12–33CrossRefGoogle Scholar
  11. Borer PM, Sulzberger B, Reichard P, Kraemer SM (2005) Effect of siderophores on the light-induced dissolution of colloidal iron (III) (hydr)oxides. Mar Chem 93(2-4):179–193.  https://doi.org/10.1016/j.marchem.2004.08.006 CrossRefGoogle Scholar
  12. Bosshard F, Bucheli M, Meur Y, Egli T (2010a) The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli. Microbiology 156(7):2006–2015.  https://doi.org/10.1099/mic.0.038471-0 CrossRefGoogle Scholar
  13. Bosshard F, Riedel K, Schneider T, Geiser C, Bucheli M, Egli T (2010b) Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environ Microbiol 12(11):2931–2945.  https://doi.org/10.1111/j.1462-2920.2010.02268.x CrossRefGoogle Scholar
  14. Bosshard F, Armand F, Hamelin R, Kohn T (2013) Mechanisms of human adenovirus inactivation by sunlight and UVC light as examined by quantitative PCR and quantitative proteomics. Appl Environ Microbiol 79(4):1325–1332.  https://doi.org/10.1128/AEM.03457-12 CrossRefGoogle Scholar
  15. Bourdon E, Blache D (2001) The importance of proteins in defense against oxidation. Antioxid Redox Signal 3(2):293–311.  https://doi.org/10.1089/152308601300185241 CrossRefGoogle Scholar
  16. Brasca M, Morandi S, Lodi R, Tamburini A (2007) Redox potential to discriminate among species of lactic acid bacteria. J Appl Microbiol 103(5):1516–1524.  https://doi.org/10.1111/j.1365-2672.2007.03392.x CrossRefGoogle Scholar
  17. Braun V, Hantke K, Koester W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–146Google Scholar
  18. Cabiscol E, Tamarit J, Ros J (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8Google Scholar
  19. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3-4):222–230.  https://doi.org/10.1016/S0891-5849(00)00317-8 CrossRefGoogle Scholar
  20. Canonica S (2007) Oxidation of aquatic organic contaminants induced by excited triplet states. CHIMIA Int J Chem 61:641–644CrossRefGoogle Scholar
  21. Castro-Alférez M, Polo-López MI, Fernández-Ibáñez P (2016) Intracellular mechanisms of solar water disinfection. Sci Rep 6(1):38145.  https://doi.org/10.1038/srep38145 CrossRefGoogle Scholar
  22. Chan Y, Killick E (1995) The effect of salinity, light and temperature in a disposal environment on the recovery of E. coli following exposure to ultraviolet radiation. Water Res 29(5):1373–1377.  https://doi.org/10.1016/0043-1354(94)00226-W CrossRefGoogle Scholar
  23. Châtellier X, Fortin D, Leppard GG, Ferris FG (2001) Effect of the presence of bacterial surfaces during the synthesis of Fe oxides by oxidation of ferrous ions. Eur J Mineral 13(4):705–714.  https://doi.org/10.1127/0935-1221/2001/0013-0705 CrossRefGoogle Scholar
  24. Châtellier X, West MM, Rose J, Fortin D, Leppard GG, Ferris FG (2004) Characterization of iron-oxides formed by oxidation of ferrous ions in the presence of various bacterial species and inorganic ligands. Geomicrobiol J 21(2):99–112.  https://doi.org/10.1080/01490450490266343 CrossRefGoogle Scholar
  25. Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Applied Catalysis B: EnvironmentalGoogle Scholar
  26. Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science (Washington) 220:711–712CrossRefGoogle Scholar
  27. Cooper WJ, Zika RG, Petasne RG, Plane JM (1988) Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ Sci Technol 22(10):1156–1160.  https://doi.org/10.1021/es00175a004 CrossRefGoogle Scholar
  28. Davies-Colley R, Donnison A, Speed D (1997) Sunlight wavelengths inactivating faecal indicator microorganisms in waste stabilisation ponds. Water Sci Technol 35:219–225CrossRefGoogle Scholar
  29. Davies-Colley R, Donnison A, Speed D, Ross C, Ja N (1999) Inactivation of faecal indicator micro-organisms in waste stabilisation ponds: interactions of environmental factors with sunlight. Water Res 33(5):1220–1230.  https://doi.org/10.1016/S0043-1354(98)00321-2 CrossRefGoogle Scholar
  30. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770.  https://doi.org/10.1016/S0006-291X(03)00817-9 CrossRefGoogle Scholar
  31. De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33(16):2726–2732.  https://doi.org/10.1021/es981171v CrossRefGoogle Scholar
  32. Draper WM, Crosby DG (1983) The photochemical generation of hydrogen peroxide in natural waters. Arch Environ Contam Toxicol 12(1):121–126.  https://doi.org/10.1007/BF01055010 CrossRefGoogle Scholar
  33. Dudal Y, Holgado R, Maestri G, Guillon E, Dupont L (2006) Rapid screening of DOM's metal-binding ability using a fluorescence-based microplate assay. Sci Total Environ 354(2-3):286–291.  https://doi.org/10.1016/j.scitotenv.2005.06.021 CrossRefGoogle Scholar
  34. Eischeid AC, Linden KG (2011) Molecular indications of protein damage in adenoviruses after UV disinfection. Appl Environ Microbiol 77(3):1145–1147.  https://doi.org/10.1128/AEM.00403-10 CrossRefGoogle Scholar
  35. Eisenstark A (1998) Bacterial gene products in response to near-ultraviolet radiation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 422(1):85–95.  https://doi.org/10.1016/S0027-5107(98)00178-X CrossRefGoogle Scholar
  36. Esteban García B, Rivas G, Arzate S, Sánchez Pérez JA (2017) Wild bacteria inactivation in WWTP secondary effluents by solar photo-Fenton at neutral pH in raceway pond reactors. Catalysis TodayGoogle Scholar
  37. Farber JL (1994) Mechanisms of cell injury by activated oxygen species. Environ Health Perspect 102(Suppl 10):17–24.  https://doi.org/10.1289/ehp.94102s1017 CrossRefGoogle Scholar
  38. Fieser M (1994) Fieser and Fieser’s reagents for organic synthesis, vol 11. John Wiley & Sons Inc., New YorkGoogle Scholar
  39. Fisher M, Keenan C, Nelson K, Voelker B (2008) Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. J Water Health 6(1):35–51.  https://doi.org/10.2166/wh.2007.005 CrossRefGoogle Scholar
  40. Fisher MB, Iriarte M, Nelson KL (2012) Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials. Water Res 46(6):1745–1754.  https://doi.org/10.1016/j.watres.2011.12.048 CrossRefGoogle Scholar
  41. Foote CS (1991) Definition of type I and type II photosensitized oxidation. Photochem Photobiol 54(5):659–659.  https://doi.org/10.1111/j.1751-1097.1991.tb02071.x CrossRefGoogle Scholar
  42. García-Fernández I, Polo-López M, Oller I, Fernández-Ibáñez P (2012a) Bacteria and fungi inactivation using Fe 3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: a comparative study. Appl Catal B Environ 121:20–29CrossRefGoogle Scholar
  43. García-Fernández I, Polo-López MI, Oller I, Fernández-Ibáñez P (2012b) Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: a comparative study. Appl Catal B Environ 121-122:20–29.  https://doi.org/10.1016/j.apcatb.2012.03.012 CrossRefGoogle Scholar
  44. Gerba CP (2000) Indicator microorganisms. Environ Microbiol:491–503Google Scholar
  45. Gernjak W, Fuerhacker M, Fernández-Ibañez P, Blanco J, Malato S (2006) Solar photo-Fenton treatment—process parameters and process control. Appl Catal B Environ 64(1-2):121–130.  https://doi.org/10.1016/j.apcatb.2005.12.002 CrossRefGoogle Scholar
  46. Giannakis S, Darakas E, Escalas-Cañellas A, Pulgarin C (2014a) Elucidating bacterial regrowth: effect of disinfection conditions in dark storage of solar treated secondary effluent. J Photochem Photobiol A Chem 290:43–53.  https://doi.org/10.1016/j.jphotochem.2014.05.016 CrossRefGoogle Scholar
  47. Giannakis S, Darakas E, Escalas-Cañellas A, Pulgarin C (2014b) The antagonistic and synergistic effects of temperature during solar disinfection of synthetic secondary effluent. J Photochem Photobiol A Chem 280:14–26.  https://doi.org/10.1016/j.jphotochem.2014.02.003 CrossRefGoogle Scholar
  48. Giannakis S, Merino Gamo AI, Darakas E, Escalas-Cañellas A, Pulgarin C (2014c) Monitoring the post-irradiation E. coli survival patterns in environmental water matrices: implications in handling solar disinfected wastewater. Chem Eng J 253:366–376.  https://doi.org/10.1016/j.cej.2014.05.092 CrossRefGoogle Scholar
  49. Giannakis S, Darakas E, Escalas-Cañellas A, Pulgarin C (2015a) Temperature-dependent change of light dose effects on E. coli inactivation during simulated solar treatment of secondary effluent. Chem Eng Sci 126:483–487.  https://doi.org/10.1016/j.ces.2014.12.045 CrossRefGoogle Scholar
  50. Giannakis S, Darakas E, Escalas-Cañellas A, Pulgarin C (2015b) Environmental considerations on solar disinfection of wastewater and the subsequent bacterial (re) growth. Photochem Photobiol Sci 14(3):618–625.  https://doi.org/10.1039/C4PP00266K CrossRefGoogle Scholar
  51. Giannakis S, Gamarra Vives FA, Grandjean D, Magnet A, De Alencastro LF, Pulgarin C (2015c) Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Res 84:295–306.  https://doi.org/10.1016/j.watres.2015.07.030 CrossRefGoogle Scholar
  52. Giannakis S, Papoutsakis S, Darakas E, Escalas-Cañellas A, Pétrier C, Pulgarin C (2015d) Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in wastewater. Ultrason Sonochem 22:515–526.  https://doi.org/10.1016/j.ultsonch.2014.04.015 CrossRefGoogle Scholar
  53. Giannakis S, Rtimi S, Darakas E, Escalas-Cañellas A, Pulgarin C (2015e) Light wavelength-dependent E. coli survival changes after simulated solar disinfection of secondary effluent. Photochem Photobiol Sci 14(12):2238–2250.  https://doi.org/10.1039/C5PP00110B CrossRefGoogle Scholar
  54. Giannakis S, Polo López MI, Spuhler D, Sánchez Pérez JA, Fernández Ibáñez P, Pulgarin C (2016a) Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—part 1: a review of the mechanisms and the fundamental aspects of the process. Appl Catal B Environ 199:199–223.  https://doi.org/10.1016/j.apcatb.2016.06.009 CrossRefGoogle Scholar
  55. Giannakis S, Polo López MI, Spuhler D, Sánchez Pérez JA, Fernández Ibáñez P, Pulgarin C (2016b) Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—part 2: a review of the applications for drinking water and wastewater disinfection. Appl Catal B Environ 198:431–446.  https://doi.org/10.1016/j.apcatb.2016.06.007 CrossRefGoogle Scholar
  56. Giannakis S, Ruales-Lonfat C, Rtimi S, Thabet S, Cotton P, Pulgarin C (2016c) Castles fall from inside: evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH. Appl Catal B Environ 185:150–162.  https://doi.org/10.1016/j.apcatb.2015.12.016 CrossRefGoogle Scholar
  57. Giannakis S, Voumard M, Grandjean D, Magnet A, De Alencastro LF, Pulgarin C (2016d) Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: influence of the secondary (pre)treatment on the efficiency of advanced oxidation processes. Water Res 102:505–515.  https://doi.org/10.1016/j.watres.2016.06.066 CrossRefGoogle Scholar
  58. Giannakis S, Liu S, Carratalà A, Rtimi S, Bensimon M, Pulgarin C (2017a) Effect of Fe (II)/Fe (III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: kinetic modeling and mechanistic interpretation. Appl Catal B Environ 204:156–166.  https://doi.org/10.1016/j.apcatb.2016.11.034 CrossRefGoogle Scholar
  59. Giannakis S, Liu S, Carratalà A, Rtimi S, Talebi Amiri M, Bensimon M, Pulgarin C (2017b) Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. J Hazard Mater 339:223–231.  https://doi.org/10.1016/j.jhazmat.2017.06.037 CrossRefGoogle Scholar
  60. Giannakis S, Watts S, Rtimi S, Pulgarin C (2017c) Solar light and the photo-Fenton process against antibiotic resistant bacteria in wastewater: a kinetic study with a streptomycin-resistant strain. Catalysis TodayGoogle Scholar
  61. Gomes A, Asad L, Felzenszwalb I, Leitão A, Silva A, Guillobel H, Asad N (2004) Does UVB radiation induce SoxS gene expression in Escherichia coli cells? Radiat Environ Biophys 43(3):219–222.  https://doi.org/10.1007/s00411-004-0253-8 CrossRefGoogle Scholar
  62. Guittonneau S, Thibaudeau D, Meallier P (1996) Free radicals formation induced by the ozonation of humic substances in aqueous medium. Catal Today 29(1-4):323–327.  https://doi.org/10.1016/0920-5861(95)00299-5 CrossRefGoogle Scholar
  63. Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B Environ 63(1-2):76–84.  https://doi.org/10.1016/j.apcatb.2005.09.013 CrossRefGoogle Scholar
  64. Han SK, Hwang T-M, Yoon Y, Kang J-W (2011) Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR). Chemosphere 84(8):1095–1101.  https://doi.org/10.1016/j.chemosphere.2011.04.051 CrossRefGoogle Scholar
  65. Hartman P, Eisenstark A (1978) Synergistic killing of Escherichia coli by near-UV radiation and hydrogen peroxide: distinction between recA-repairable and recA-nonrepairable damage. J Bacteriol 133(2):769–774Google Scholar
  66. Hartman P, Eisenstark A (1980) Killing of Escherichia coli K-12 by near-ultraviolet radiation in the presence of hydrogen peroxide: role of double-strand DNA breaks in absence of recombinational repair. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 72(1):31–42.  https://doi.org/10.1016/0027-5107(80)90217-1 CrossRefGoogle Scholar
  67. Hoerter J, Pierce A, Troupe C, Epperson J, Eisenstark A (1996) Role of enterobactin and intracellular iron in cell lethality during near-UV irradiation in Escherichia coli. Photochem Photobiol 64(3):537–541.  https://doi.org/10.1111/j.1751-1097.1996.tb03102.x CrossRefGoogle Scholar
  68. Hu L, Page MA, Sigstam T, Kohn T, Mariñas BJ, Strathmann TJ (2012) Inactivation of bacteriophage MS2 with potassium ferrate (VI). Environ Sci Technol 46(21):12079–12087.  https://doi.org/10.1021/es3031962 CrossRefGoogle Scholar
  69. Huang W, Brigante M, Wu F, Hanna K, Mailhot G (2013) Effect of ethylenediamine-N,N′-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation. Environ Sci Pollut Res 20(1):39–50.  https://doi.org/10.1007/s11356-012-1042-6 CrossRefGoogle Scholar
  70. Hug SJ, Leupin O (2003) Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 37(12):2734–2742.  https://doi.org/10.1021/es026208x CrossRefGoogle Scholar
  71. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309.  https://doi.org/10.1126/science.3287616 CrossRefGoogle Scholar
  72. Imlay JA (2003) Pathways of oxidative damage. Annual Reviews in Microbiology 57(1):395–418.  https://doi.org/10.1146/annurev.micro.57.030502.090938 CrossRefGoogle Scholar
  73. Imlay JA (2015) Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol 24:124–131.  https://doi.org/10.1016/j.mib.2015.01.004 CrossRefGoogle Scholar
  74. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages—review. Folia Microbiol 56(3):191–200.  https://doi.org/10.1007/s12223-011-0039-8 CrossRefGoogle Scholar
  75. Keenan C (2001) The effect of additional hydrogen peroxide on solar water disinfection. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  76. Kelland L, Moss S, Davies D (1983) Recovery of Escherichia coli k-12 from near-ultraviolet radiation-induced membrane damage. Photochem Photobiol 37(6):617–622.  https://doi.org/10.1111/j.1751-1097.1983.tb04530.x CrossRefGoogle Scholar
  77. Khaengraeng R, Reed R (2005) Oxygen and photoinactivation of Escherichia coli in UVA and sunlight. J Appl Microbiol 99(1):39–50.  https://doi.org/10.1111/j.1365-2672.2005.02606.x CrossRefGoogle Scholar
  78. Kim JY, Lee C, Sedlak DL, Yoon J, Nelson KL (2010) Inactivation of MS2 coliphage by Fenton's reagent. Water Res 44(8):2647–2653.  https://doi.org/10.1016/j.watres.2010.01.025 CrossRefGoogle Scholar
  79. Klinck J, Dunbar M, Brown S, Nichols J, Winter A, Hughes C, Playle RC (2005) Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 72(1-2):161–175.  https://doi.org/10.1016/j.aquatox.2004.11.013 CrossRefGoogle Scholar
  80. Knowles RL, Eisenstark A (1994) Near-ultraviolet mutagenesis in superoxide dismutase-deficient strains of Escherichia coli. Environ Health Perspect 102(1):88–94.  https://doi.org/10.1289/ehp.9410288 CrossRefGoogle Scholar
  81. Kohn T, Grandbois M, McNeill K, Nelson KL (2007) Association with natural organic matter enhances the sunlight-mediated inactivation of MS2 coliphage by singlet oxygen. Environ Sci Technol 41(13):4626–4632.  https://doi.org/10.1021/es070295h CrossRefGoogle Scholar
  82. Kohn T, Nelson KL (2007) Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environ Sci Technol 41(1):192–197.  https://doi.org/10.1021/es061716i CrossRefGoogle Scholar
  83. Krutzler T, Fallmann H, Maletzky P, Bauer R, Malato S, Blanco J (1999) Solar driven degradation of 4-chlorophenol. Catal Today 54(2-3):321–327.  https://doi.org/10.1016/S0920-5861(99)00193-5 CrossRefGoogle Scholar
  84. Lin S-S, Gurol MD (1998) Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 32(10):1417–1423.  https://doi.org/10.1021/es970648k CrossRefGoogle Scholar
  85. Mamane H, Shemer H, Linden KG (2007) Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. J Hazard Mater 146(3):479–486.  https://doi.org/10.1016/j.jhazmat.2007.04.050 CrossRefGoogle Scholar
  86. Manciulea A, Baker A, Lead JR (2009) A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles. Chemosphere 76(8):1023–1027.  https://doi.org/10.1016/j.chemosphere.2009.04.067 CrossRefGoogle Scholar
  87. Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098Google Scholar
  88. Marugán J, van Grieken R, Sordo C, Cruz C (2008) Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Appl Catal B Environ 82(1-2):27–36.  https://doi.org/10.1016/j.apcatb.2008.01.002 CrossRefGoogle Scholar
  89. Mattle MJ, Vione D, Kohn T (2014) Conceptual model and experimental framework to determine the contributions of direct and indirect photoreactions to the solar disinfection of MS2, phiX174, and adenovirus. Environ Sci Technol 49:334–342CrossRefGoogle Scholar
  90. Mazellier P, Bolte M (2000) Heterogeneous light-induced transformation of 2, 6-dimethylphenol in aqueous suspensions containing goethite. J Photochem Photobiol A Chem 132(1-2):129–135.  https://doi.org/10.1016/S1010-6030(00)00198-2 CrossRefGoogle Scholar
  91. McGuigan K, Joyce T, Conroy R, Gillespie J, Elmore-Meegan M (1998) Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. J Appl Microbiol 84(6):1138–1148.  https://doi.org/10.1046/j.1365-2672.1998.00455.x CrossRefGoogle Scholar
  92. McGuigan KG, Conroy RM, Mosler HJ, du Preez M, Ubomba-Jaswa E, Fernandez-Ibanez P (2012) Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235-236:29–46.  https://doi.org/10.1016/j.jhazmat.2012.07.053 CrossRefGoogle Scholar
  93. McKay G, Rosario-Ortiz FL (2015) Temperature dependence of the photochemical formation of hydroxyl radical from dissolved organic matter. Environ Sci Technol 49(7):4147–4154.  https://doi.org/10.1021/acs.est.5b00102 CrossRefGoogle Scholar
  94. Michen B, Graule T (2010) Isoelectric points of viruses. J Appl Microbiol 109(2):388–397.  https://doi.org/10.1111/j.1365-2672.2010.04663.x CrossRefGoogle Scholar
  95. Millero F (1997) The influence of iron on carbon dioxide in surface seawater. Water Science and Technology Library 25:381–398Google Scholar
  96. Moncayo-Lasso A, Sanabria J, Pulgarin C, Benitez N (2009) Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere 77(2):296–300.  https://doi.org/10.1016/j.chemosphere.2009.07.007 CrossRefGoogle Scholar
  97. Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe (II) oxidation by O 2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere 68(11):2080–2084.  https://doi.org/10.1016/j.chemosphere.2007.02.015 CrossRefGoogle Scholar
  98. Mostofa K, Wu F, Yoshioka T, Sakugawa H, Tanoue E (2009) Dissolved organic matter in the aquatic environments. Natural organic matter and its significance in the environment. Science Press, Beijing, pp 3–66Google Scholar
  99. Ndounla J, Spuhler D, Kenfack S, Wéthé J, Pulgarin C (2013) Inactivation by solar photo-Fenton in pet bottles of wild enteric bacteria of natural well water: absence of re-growth after one week of subsequent storage. Appl Catal B Environ 129:309–317.  https://doi.org/10.1016/j.apcatb.2012.09.016 CrossRefGoogle Scholar
  100. Ndounla J, Kenfack S, Wéthé J, Pulgarin C (2014) Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor. Appl Catal B Environ 148:144–153CrossRefGoogle Scholar
  101. Ndounla J, Pulgarin C (2014) Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region. Sci Total Environ 493:229–238.  https://doi.org/10.1016/j.scitotenv.2014.05.139 CrossRefGoogle Scholar
  102. Ndounla J, Pulgarin C (2015) Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region. Environ Sci Pollut Res:1–13Google Scholar
  103. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1-3):33–50.  https://doi.org/10.1016/S0304-3894(02)00282-0 CrossRefGoogle Scholar
  104. Ng TW, An T, Li G, Ho WK, Yip HY, Zhao H, Wong PK (2015) The role and synergistic effect of the light irradiation and H 2 O 2 in photocatalytic inactivation of Escherichia coli. J Photochem Photobiol B Biol 149:164–171.  https://doi.org/10.1016/j.jphotobiol.2015.06.007 CrossRefGoogle Scholar
  105. Nieto-Juarez JI, Pierzchła K, Sienkiewicz A, Kohn T (2010) Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight. Environ Sci Technol 44(9):3351–3356.  https://doi.org/10.1021/es903739f CrossRefGoogle Scholar
  106. Nieto-Juarez JI, Kohn T (2013) Virus removal and inactivation by iron (hydr) oxide-mediated Fenton-like processes under sunlight and in the dark. Photochem Photobiol Sci 12(9):1596–1605.  https://doi.org/10.1039/c3pp25314g CrossRefGoogle Scholar
  107. Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166.  https://doi.org/10.1016/j.scitotenv.2010.08.061 CrossRefGoogle Scholar
  108. Olson MR, Axler RP, Hicks RE (2004) Effects of freezing and storage temperature on MS2 viability. J Virol Methods 122(2):147–152.  https://doi.org/10.1016/j.jviromet.2004.08.010 CrossRefGoogle Scholar
  109. Ortega-Gomez E, Fernandez-Ibanez P, Ballesteros Martin MM, Polo-Lopez MI, Esteban Garcia B, Sanchez Perez JA (2012) Water disinfection using photo-Fenton: Effect of temperature on Enterococcus faecalis survival. Water Res 46(18):6154–6162.  https://doi.org/10.1016/j.watres.2012.09.007 CrossRefGoogle Scholar
  110. Ortega-Gómez E, Esteban García B, Ballesteros Martín MM, Fernández Ibáñez P, Sánchez Pérez JA (2013) Inactivation of Enterococcus faecalis in simulated wastewater treatment plant effluent by solar photo-Fenton at initial neutral pH. Catal Today 209:195–200.  https://doi.org/10.1016/j.cattod.2013.03.001 CrossRefGoogle Scholar
  111. Ortega-Gómez E, Ballesteros Martín MM, Esteban García B, Sánchez Pérez JA, Fernández Ibáñez P (2014a) Solar photo-Fenton for water disinfection: an investigation of the competitive role of model organic matter for oxidative species. Appl Catal B Environ 148–149:484–489CrossRefGoogle Scholar
  112. Ortega-Gómez E, García BE, Martín MB, Ibáñez PF, Pérez JS (2014b) Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Res 63:316–324.  https://doi.org/10.1016/j.watres.2014.05.034 CrossRefGoogle Scholar
  113. Ortega-Gómez E, Ballesteros Martín MM, Carratalà A, Fernández Ibañez P, Sánchez Pérez JA, Pulgarín C (2015) Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and μM concentrations of H2O2 and Fe2+/3+. Appl Catal B Environ 174-175:395–402.  https://doi.org/10.1016/j.apcatb.2015.03.016 CrossRefGoogle Scholar
  114. Page MA, Shisler JL, Mariñas BJ (2010) Mechanistic aspects of adenovirus serotype 2 inactivation with free chlorine. Appl Environ Microbiol 76(9):2946–2954.  https://doi.org/10.1128/AEM.02267-09 CrossRefGoogle Scholar
  115. Pattison DI, Davies MJ (2006) Actions of ultraviolet light on cellular structures, cancer: cell structures, carcinogens and genomic instability. Springer, pp 131–157Google Scholar
  116. Pierre J, Fontecave M, Crichton R (2002) Chemistry for an essential biological process: the reduction of ferric iron. Biometals 15(4):341–346.  https://doi.org/10.1023/A:1020259021641 CrossRefGoogle Scholar
  117. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84.  https://doi.org/10.1080/10643380500326564 CrossRefGoogle Scholar
  118. Polo-López MI, García-Fernández I, Velegraki T, Katsoni A, Oller I, Mantzavinos D, Fernández-Ibáñez P (2012) Mild solar photo-Fenton: an effective tool for the removal of Fusarium from simulated municipal effluents. Appl Catal B Environ 111:545–554CrossRefGoogle Scholar
  119. Pouran SR, Raman AAA, Daud WMAW (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35.  https://doi.org/10.1016/j.jclepro.2013.09.013 CrossRefGoogle Scholar
  120. Poyatos J, Muñio M, Almecija M, Torres J, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205(1-4):187–204.  https://doi.org/10.1007/s11270-009-0065-1 CrossRefGoogle Scholar
  121. Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B Biol 63(1-3):88–102.  https://doi.org/10.1016/S1011-1344(01)00206-8 CrossRefGoogle Scholar
  122. Rincón A-G, Pulgarin C (2006) Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl Catal B Environ 63(3-4):222–231.  https://doi.org/10.1016/j.apcatb.2005.10.009 CrossRefGoogle Scholar
  123. Ritchie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67(1):85–96.  https://doi.org/10.1016/S0016-7037(02)01044-X CrossRefGoogle Scholar
  124. Rodríguez-Chueca J, Morales M, Mosteo R, Ormad M, Ovelleiro J (2013) Inactivation of Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli present in treated urban wastewater by coagulation–flocculation and photo-Fenton processes. Photochem Photobiol Sci 12(5):864–871.  https://doi.org/10.1039/c3pp25352j CrossRefGoogle Scholar
  125. Rodríguez-Chueca J, Mediano A, Ormad M, Mosteo R, Ovelleiro J (2014a) Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields. Water Res 60:250–258.  https://doi.org/10.1016/j.watres.2014.04.040 CrossRefGoogle Scholar
  126. Rodríguez-Chueca J, Polo-López MI, Mosteo R, Ormad MP, Fernández-Ibáñez P (2014b) Disinfection of real and simulated urban wastewater effluents using mild solar photo-Fenton. Appl Catal B: Environ 50–151:619–629.  https://doi.org/10.1016/j.apcatb.2013.12.027 CrossRefGoogle Scholar
  127. Rodríguez-Chueca J, Ormad MP, Mosteo R, Ovelleiro JL (2015) Kinetic modeling of Escherichia coli and Enterococcus sp. inactivation in wastewater treatment by photo-Fenton and H2O2/UV–vis processes. Chem Eng Sci 138:730–740.  https://doi.org/10.1016/j.ces.2015.08.051 CrossRefGoogle Scholar
  128. Rodríguez E, Fernández G, Ledesma B, Álvarez P, Beltrán FJ (2009) Photocatalytic degradation of organics in water in the presence of iron oxides: influence of carboxylic acids. Appl Catal B Environ 92(3-4):240–249.  https://doi.org/10.1016/j.apcatb.2009.07.013 CrossRefGoogle Scholar
  129. Rodriguez RA, Bounty S, Beck S, Chan C, McGuire C, Linden KG (2014) Photoreactivation of bacteriophages after UV disinfection: role of genome structure and impacts of UV source. Water Res 55:143–149.  https://doi.org/10.1016/j.watres.2014.01.065 CrossRefGoogle Scholar
  130. Romero OC, Straub AP, Kohn T, Nguyen TH (2011) Role of temperature and Suwannee River natural organic matter on inactivation kinetics of rotavirus and bacteriophage MS2 by solar irradiation. Environ Sci Technol 45(24):10385–10393.  https://doi.org/10.1021/es202067f CrossRefGoogle Scholar
  131. Rose AL, Waite TD (2002) Kinetic model for Fe (II) oxidation in seawater in the absence and presence of natural organic matter. Environ Sci Technol 36(3):433–444.  https://doi.org/10.1021/es0109242 CrossRefGoogle Scholar
  132. Ruales-Lonfat C, Benítez N, Sienkiewicz A, Pulgarín C (2014) Deleterious effect of homogeneous and heterogeneous near-neutral photo-Fenton system on Escherichia coli. Comparison with photo-catalytic action of TiO 2 during cell envelope disruption. Appl Catal B Environ 160:286–297CrossRefGoogle Scholar
  133. Ruales-Lonfat C, Barona JF, Sienkiewicz A, Bensimon M, Vélez-Colmenares J, Benítez N, Pulgarín C (2015) Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH. Appl Catal B Environ 166–167:497–508CrossRefGoogle Scholar
  134. Ruales-Lonfat C, Barona JF, Sienkiewicz A, Vélez J, Benítez LN, Pulgarín C (2016) Bacterial inactivation with iron citrate complex: a new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH. Appl Catal B Environ 180:379–390.  https://doi.org/10.1016/j.apcatb.2015.06.030 CrossRefGoogle Scholar
  135. Sarria V, Kenfack S, Guillod O, Pulgarin C (2003) An innovative coupled solar-biological system at field pilot scale for the treatment of biorecalcitrant pollutants. J Photochem Photobiol A Chem 159(1):89–99.  https://doi.org/10.1016/S1010-6030(03)00105-9 CrossRefGoogle Scholar
  136. Schindler M, Osborn M (1979) Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18(20):4425–4430.  https://doi.org/10.1021/bi00587a024 CrossRefGoogle Scholar
  137. Schwartz ML, Curtis PJ, Playle RC (2004) Influence of natural organic matter source on acute copper, lead, and cadmium toxicity to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23(12):2889–2899.  https://doi.org/10.1897/03-561.1 CrossRefGoogle Scholar
  138. Sciacca F, Rengifo-Herrera JA, Wéthé J, Pulgarin C (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron. Chemosphere 78(9):1186–1191.  https://doi.org/10.1016/j.chemosphere.2009.12.001 CrossRefGoogle Scholar
  139. Scully N, McQueen D, Lean D (1996) Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75 N gradient. Limnol Oceanogr 41(3):540–548.  https://doi.org/10.4319/lo.1996.41.3.0540 CrossRefGoogle Scholar
  140. Seaver LC, Imlay JA (2001) Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183(24):7182–7189.  https://doi.org/10.1128/JB.183.24.7182-7189.2001 CrossRefGoogle Scholar
  141. Selvakumar A, Tuccillo ME, Muthukrishnan S, Ray AB (2009) Use of Fenton’s reagent as a disinfectant. Remediat J 19(2):135–142.  https://doi.org/10.1002/rem.20208 CrossRefGoogle Scholar
  142. Sichel C, Fernández-Ibáñez P, de Cara M, Tello J (2009) Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water. Water Res 43(7):1841–1850.  https://doi.org/10.1016/j.watres.2009.01.017 CrossRefGoogle Scholar
  143. Siffert C, Sulzberger B (1991) Light-induced dissolution of hematite in the presence of oxalate. A case study. Langmuir 7(8):1627–1634.  https://doi.org/10.1021/la00056a014 CrossRefGoogle Scholar
  144. Silverman AI, Peterson BM, Boehm AB, McNeill K, Nelson KL (2013) Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers. Environ Sci Technol 47(4):1870–1878.  https://doi.org/10.1021/es3036913 CrossRefGoogle Scholar
  145. Smyk-Randall E, Brown O, Wilke A, Eisenstark A, Flint D (1993) Near ultraviolet light inactivation of dihydroxyacid dehydratase in Escherichia coli. Free Radic Biol Med 14(6):609–613.  https://doi.org/10.1016/0891-5849(93)90142-H CrossRefGoogle Scholar
  146. Spuhler D, Rengifo-Herrera JA, Pulgarin C (2010) The effect of Fe2+, Fe3+, H202 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl Catal B Environ 96(1-2):126–141.  https://doi.org/10.1016/j.apcatb.2010.02.010 CrossRefGoogle Scholar
  147. Stenson AC, Marshall AG, Cooper WT (2003) Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem 75(6):1275–1284.  https://doi.org/10.1021/ac026106p CrossRefGoogle Scholar
  148. Timchak E, Gitis V (2012) A combined degradation of dyes and inactivation of viruses by UV and UV/H 2 O 2. Chem Eng J 192:164–170.  https://doi.org/10.1016/j.cej.2012.03.054 CrossRefGoogle Scholar
  149. Tortora GJ (2010) Microbiology: an introduction 10th EdGoogle Scholar
  150. Tratnyek PG, Hoigné J (1994) Photo-oxidation of 2,4,6-trimethylphenol in aqueous laboratory solutions and natural waters: kinetics of reaction with singlet oxygen. J Photochem Photobiol A Chem 84(2):153–160.  https://doi.org/10.1016/1010-6030(94)03861-9 CrossRefGoogle Scholar
  151. Tyrrell RM, Pourzand CA, Brown J, Hejmadi V, Kvam V, Ryter S, Watkin R (2000) Cellular studies with UVA radiation: a role for iron. Radiat Prot Dosim 91(1):37–39.  https://doi.org/10.1093/oxfordjournals.rpd.a033231 CrossRefGoogle Scholar
  152. Uhl L, Gerstel A, Chabalier M, Dukan S (2015) Hydrogen peroxide induced cell death: one or two modes of action? Heliyon 1(4):e00049.  https://doi.org/10.1016/j.heliyon.2015.e00049 CrossRefGoogle Scholar
  153. Uhl L, Dukan S (2016) Hydrogen peroxide induced cell death: the major defences relative roles and consequences in E. coli. PLoS One 11(8):e0159706.  https://doi.org/10.1371/journal.pone.0159706 CrossRefGoogle Scholar
  154. Upritchard HG, Yang J, Bremer PJ, Lamont IL, McQuillan AJ (2007) Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals. Langmuir 23(13):7189–7195.  https://doi.org/10.1021/la7004024 CrossRefGoogle Scholar
  155. Uribe IO, Mosquera-Corral A, Rodicio JL, Esplugas S (2015) Advanced technologies for water treatment and reuse. AICHE J 61(10):3146–3158.  https://doi.org/10.1002/aic.15013 CrossRefGoogle Scholar
  156. Valero P, Giannakis S, Mosteo R, Ormad MP (2016) Pulgarin C. Comparative effect of growth media on the monitoring E. coli inactivation and regrowth after solar and photo-Fenton treatment, Chemical Engineering JournalGoogle Scholar
  157. Valero P, Verbel M, Silva-Agredo J, Mosteo R, Ormad MP, Torres-Palma RA (2017) Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents. J Environ Manag 198(Pt 1):256–265.  https://doi.org/10.1016/j.jenvman.2017.04.070 CrossRefGoogle Scholar
  158. Venkatadri R, Peters RW (1993) Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazardous Waste and Hazard Mater 10(2):107–149.  https://doi.org/10.1089/hwm.1993.10.107 CrossRefGoogle Scholar
  159. Villegas-Guzman P, Giannakis S, Torres-Palma RA, Pulgarin C (2016): Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Appl Catal B: EnvironGoogle Scholar
  160. Villegas-Guzman P, Giannakis S, Rtimi S, Grandjean D, Bensimon M, De Alencastro LF, Torres-Palma R, Pulgarin C (2017) A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. Appl Catal B Environ 219:538–549.  https://doi.org/10.1016/j.apcatb.2017.07.066 CrossRefGoogle Scholar
  161. Vione D, Minella M, Maurino V, Minero C (2014) Indirect photochemistry in sunlit surface waters: photoinduced production of reactive transient species. Chem Eur J 20(34):10590–10606.  https://doi.org/10.1002/chem.201400413 CrossRefGoogle Scholar
  162. Voelker BM, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30(4):1106–1114.  https://doi.org/10.1021/es9502132 CrossRefGoogle Scholar
  163. Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31(4):1004–1011.  https://doi.org/10.1021/es9604018 CrossRefGoogle Scholar
  164. Von Sperling M (2005) Modelling of coliform removal in 186 facultative and maturation ponds around the world. Water Res 39(20):5261–5273.  https://doi.org/10.1016/j.watres.2005.10.016 CrossRefGoogle Scholar
  165. Waite TD, Morel FM (1984) Photoreductive dissolution of colloidal iron oxides in natural waters. Environ Sci Technol 18(11):860–868.  https://doi.org/10.1021/es00129a010 CrossRefGoogle Scholar
  166. Wang C, Liu H, Sun Z (2012) Heterogeneous photo-Fenton reaction catalyzed by nanosized iron oxides for water treatment. Int J Photoenergy 2012:1–10.  https://doi.org/10.1155/2012/801694 CrossRefGoogle Scholar
  167. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362(6423):834–836.  https://doi.org/10.1038/362834a0 CrossRefGoogle Scholar
  168. Wierzchowski K, Shugar D (1960) Photochemistry of cytosine nucleosides and nucleotides. II. Acta Biochim Pol 8:219–234Google Scholar
  169. Wigginton KR, Kohn T (2012) Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr Opin Virol 2(1):84–89.  https://doi.org/10.1016/j.coviro.2011.11.003 CrossRefGoogle Scholar
  170. Xu J, Sahai N, Eggleston CM, Schoonen MA (2013) Reactive oxygen species at the oxide/water interface: formation mechanisms and implications for prebiotic chemistry and the origin of life. Earth Planet Sci Lett 363:156–167.  https://doi.org/10.1016/j.epsl.2012.12.008 CrossRefGoogle Scholar
  171. Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556.  https://doi.org/10.2138/am-2000-0416 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations