Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9230–9242 | Cite as

Chemometric and high-resolution mass spectrometry tools for the characterization and comparison of raw and treated wastewater samples of a pilot plant on the SIPIBEL site

  • Agneta Kiss
  • Alexandre Bergé
  • Bruno Domenjoud
  • Adriana Gonzalez-Ospina
  • Emmanuelle Vulliet
Pharmaceuticals and detergents in hospital and urban wastewater: characterisation and impacts

Abstract

Due to its key role in the contamination of natural resources, the assessment of raw and treated wastewater effluents is a current major concern and urges comprehensive analytical methods capable of selectively capturing the chemodiversity of these samples. In this context, the overall objective of this work can be summarized as (i) the assessment of the performance of secondary and tertiary (advanced oxidation) wastewater treatments through multivariate analysis followed by (ii) the comprehensive characterization of wastewater samples based on their spectral fingerprints and a combination of suspect and non-target screening approaches. Several compounds, belonging to different sources of contamination were annotated and/or partially identified: pharmaceuticals, metabolites and transformation compounds, human activity markers, surfactants, and polyethoxy compounds. These results highlight the contribution of filtering and screening tools such as monoisotopic exact mass, mass defect, MS/MS data-dependent acquisitions, isotopic pattern and retention time to the selection, and the identification of environmental contaminants and their metabolites/degradation products. This paper completes the target study conducted in the SIPIBEL site and offers an alternative for the assessment of treatment processes by broadening the spectrum to a larger number of compounds and the correlations between them.

Keywords

High-resolution mass spectrometry Wastewaters Comprehensive analysis Ozonation 

Notes

Acknowledgements

This research is financially supported by the French Ministry of Economy, Industry, and Digital within the framework of the Project TRIUMPH (TReatIng Urban Micropollutants and Pharmaceuticals in wastewaters) labeled and managed by the European Eureka Cluster ACQUEAU and pilot by Suez (Degremont). The experimental pilot program is hosted into the SIPIBEL (field observatory on hospital’s effluents and urban wastewater treatment plants). A French program supported by Rhone-Mediterranean Corsica water agency, The Rhône Alpes Region and others partners.

References

  1. Barcelo D (2000) Sample handling and trace analysis of pollutants: techniques, applications and quality assurance. Elsevier Science, AmsterdamGoogle Scholar
  2. Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut 142(2):295–302.  https://doi.org/10.1016/j.envpol.2005.10.010 CrossRefGoogle Scholar
  3. Bergé A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 407(26):7995–8008.  https://doi.org/10.1007/s00216-015-8972-z CrossRefGoogle Scholar
  4. Bergé A, Giroud B, Wiest L, Domenjoud B, Gonzalez-Ospina A, Vulliet E (2016) Development of a multiple-class analytical method based on the use of synthetic matrices for the simultaneous determination of commonly used commercial surfactants in wastewater by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1450:64–75CrossRefGoogle Scholar
  5. Bradley PM, Barber LB, Kolpin DW, McMahon PB, Chapelle FH (2007) Biotransformation of caffeine, cotinine, and nicotine in stream sediments: implications for use as wastewater indicators. Environ Toxicol Chem 26(6):1116–1121.  https://doi.org/10.1897/06-483R.1 CrossRefGoogle Scholar
  6. Buerge I, Poiger T, Müller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Enviro Sci Technol 37(4):691–700.  https://doi.org/10.1021/es020125z CrossRefGoogle Scholar
  7. Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E (2014) Occurrence of surfactants in wastewater: hourly and seasonal variations in urban and industrial wastewaters from Seville (southern Spain). Sci Total Environ 468:977–984.  https://doi.org/10.1016/j.scitotenv.2013.09.020 CrossRefGoogle Scholar
  8. Cao M, Fraser K, Huege J, Featonby T, Rasmussen S, Jones C (2015) Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics. Metabolomics 11(3):696–706.  https://doi.org/10.1007/s11306-014-0727-x CrossRefGoogle Scholar
  9. Coquery M, Morin A, Becue A, Lepot B (2005) Priority substances of the European water framework directive: analytical challenges in monitoring water quality. Trac-Trends Anal Chem 24(2):117–127.  https://doi.org/10.1016/j.trac.2004.11.004 CrossRefGoogle Scholar
  10. Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS (2015) Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol 49(20):12333–12341.  https://doi.org/10.1021/acs.est.5b03454 CrossRefGoogle Scholar
  11. González S, Petrović M, Radetic M, Jovancic P, Ilic V, Barceló D (2008) Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22(10):1445–1454.  https://doi.org/10.1002/rcm.3527 CrossRefGoogle Scholar
  12. Hogenboom AC, van Leerdam JA, de Voogt P (2009) Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A 1216(3):510–519.  https://doi.org/10.1016/j.chroma.2008.08.053 CrossRefGoogle Scholar
  13. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714.  https://doi.org/10.1002/jms.1777 CrossRefGoogle Scholar
  14. Hufsky F, Scheubert K, Bocker S (2014) Computational mass spectrometry for small-molecule fragmentation. Trends Anal Chem 53:41–48.  https://doi.org/10.1016/j.trac.2013.09.008 CrossRefGoogle Scholar
  15. Hug C, Ulrich N, Schulze T, Brack W, Krauss M (2014) Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut 184:25–32.  https://doi.org/10.1016/j.envpol.2013.07.048 CrossRefGoogle Scholar
  16. Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35(4):401–427.  https://doi.org/10.1080/10643380590956966 CrossRefGoogle Scholar
  17. Kiss A, Bordes C, Buisson C, Lasne F, Lanteri P, Cren-Olivé C (2014) Data-handling strategies for metabonomic studies: example of the UHPLC-ESI/ToF urinary signature of tetrahydrocannabinol in humans. Anal Bioanal Chem 406(4):1209–1219.  https://doi.org/10.1007/s00216-013-7199-0 CrossRefGoogle Scholar
  18. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res 39(Database):D1035–D1041.  https://doi.org/10.1093/nar/gkq1126 CrossRefGoogle Scholar
  19. Krauss M, Singer H, Hollender J (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397(3):943–951.  https://doi.org/10.1007/s00216-010-3608-9 CrossRefGoogle Scholar
  20. Kujawinski EB (2002) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures. Environ Forensic 3(3):207–216.  https://doi.org/10.1080/713848382 CrossRefGoogle Scholar
  21. Lara-Martin PA, Gonzalez-Mazo E, Brownawell BJ (2011) Multi-residue method for the analysis of synthetic surfactants and their degradation metabolites in aquatic systems by liquid chromatography-time-of-flight-mass spectrometry. J Chromatogr A 1218(30):4799–4807.  https://doi.org/10.1016/j.chroma.2011.02.031 CrossRefGoogle Scholar
  22. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):D1091–D1097.  https://doi.org/10.1093/nar/gkt1068 CrossRefGoogle Scholar
  23. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S, Trausinger G, Sinner F, Pieber T, Magnes C (2015) IPO: a tool for automated optimization of XCMS parameters. BMC Bioinf 16(1):118.  https://doi.org/10.1186/s12859-015-0562-8 CrossRefGoogle Scholar
  24. Lim SJ, Seo CK, Kim TH, Myung SW (2013) Occurrence and ecological hazard assessment of selected veterinary medicines in livestock wastewater treatment plants. J Environ Sci Health Part B-Pestic Food Contam Agric Wastes 48(8):658–670.  https://doi.org/10.1080/03601234.2013.778604 CrossRefGoogle Scholar
  25. Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M (2011) Ion-mobility spectrometry for environmental analysis. Trac-Trends Anal Chem 30(5):677–690.  https://doi.org/10.1016/j.trac.2010.12.007 CrossRefGoogle Scholar
  26. McKeown AE (2015) Impact of water pollution on human health and environmental sustainability. IGI GlobalGoogle Scholar
  27. Medeiros PM, Simoneit BRT (2007) Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research. J Sep Sci 30(10):1516–1536.  https://doi.org/10.1002/jssc.200600399 CrossRefGoogle Scholar
  28. Miege C, Choubert JM, Ribeiro L, Eusebe M, Coquer M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut 157(5):1721–1726.  https://doi.org/10.1016/j.envpol.2008.11.045 CrossRefGoogle Scholar
  29. Neumann S, Bocker S (2010) Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Anal Bioanal Chem 398(7-8):2779–2788.  https://doi.org/10.1007/s00216-010-4142-5 CrossRefGoogle Scholar
  30. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234.  https://doi.org/10.1007/s00216-006-1035-8 CrossRefGoogle Scholar
  31. Núñez O, Gallart-Ayala H, Martins CP, Lucci P (2012) New trends in fast liquid chromatography for food and environmental analysis. J Chromatogr A 1228:298–323.  https://doi.org/10.1016/j.chroma.2011.10.091 CrossRefGoogle Scholar
  32. Roslev P, Bukh AS (2011) State of the art molecular markers for fecal pollution source tracking in water. Appl Microbiol Biotechnol 89(5):1341–1355.  https://doi.org/10.1007/s00253-010-3080-7 CrossRefGoogle Scholar
  33. Sánchez-Avila J, Bonet J, Velasco G, Lacorte S (2009) Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant. Sci Total Environ 407(13):4157–4167.  https://doi.org/10.1016/j.scitotenv.2009.03.016 CrossRefGoogle Scholar
  34. Sánchez-Polo M, Rivera-Utrilla J, Prados-Joya G, Ferro-García MA, Bautista-Toledo I (2008) Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system. Water Res 42(15):4163–4171.  https://doi.org/10.1016/j.watres.2008.05.034 CrossRefGoogle Scholar
  35. Scheubert K, Hufsky F, Bocker S (2013) Computational mass spectrometry for small molecules. Journal of Cheminformatics 5(1):12.  https://doi.org/10.1186/1758-2946-5-12 CrossRefGoogle Scholar
  36. Schollée JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015) Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic. Anal Chem 87(24):12121–12129.  https://doi.org/10.1021/acs.analchem.5b02905 CrossRefGoogle Scholar
  37. Schymanski EL, Singer HP, Longrée P, Loos M, Ruff M, Stravs MA, Ripollés Vidal C, Hollender J (2014) Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol 48(3):1811–1818.  https://doi.org/10.1021/es4044374 CrossRefGoogle Scholar
  38. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibáñez M, Portolés T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, Bados P, Bogialli S, Stipaničev D, Rostkowski P, Hollender J (2015) Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem 407(21):6237–6255.  https://doi.org/10.1007/s00216-015-8681-7 CrossRefGoogle Scholar
  39. Senta I, Gracia-Lor E, Borsotti A, Zuccato E, Castiglioni S (2015) Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water Res 74:23–33.  https://doi.org/10.1016/j.watres.2015.02.002 CrossRefGoogle Scholar
  40. Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36(23):4998–5004.  https://doi.org/10.1021/es025750i CrossRefGoogle Scholar
  41. Thiele H, McLeod G, Niemitz M, Kühn T (2011) Structure verification of small molecules using mass spectrometry and NMR spectroscopy. Monatshefte Fur Chemie 142(7):717–730.  https://doi.org/10.1007/s00706-011-0486-6 CrossRefGoogle Scholar
  42. Vulliet E, Baugros JB, Flament-Waton MM, Grenier-Loustalot MF (2007) Analytical methods for the determination of selected steroid sex hormones and corticosteroids in wastewater. Anal Bioanal Chem 387(6):2143–2151.  https://doi.org/10.1007/s00216-006-1084-z CrossRefGoogle Scholar
  43. Wiest L, Chonova T, Bergé A, Baudot R, Barbier F, Ayouni-Derouiche L, Vulliet E (2017) Two years survey of specific hospital wastewater treatment at the SIPIBEL site (France): impact on pharmaceutical discharges. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-9662-5
  44. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(90001):D668–D672.  https://doi.org/10.1093/nar/gkj067 CrossRefGoogle Scholar
  45. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res 41(Database issue):D801–D807.  https://doi.org/10.1093/nar/gks1065 Google Scholar
  46. Zhu M, Ma L, Zhang D, Ray K, Zhao W, Humphreys WG, Skiles G, Sanders M, Zhang H (2006) Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high-resolution mass spectrometry data. Drug Metab Dispos 34(10):1722–1733.  https://doi.org/10.1124/dmd.106.009241 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Agneta Kiss
    • 1
  • Alexandre Bergé
    • 1
  • Bruno Domenjoud
    • 2
  • Adriana Gonzalez-Ospina
    • 2
  • Emmanuelle Vulliet
    • 1
  1. 1.University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280VilleurbanneFrance
  2. 2.Degremont, Direction Technique InnovationRueil-MalmaisonFrance

Personalised recommendations