Skip to main content
Log in

The crop-residue of fiber hemp cv. Futura 75: from a waste product to a source of botanical insecticides

  • Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the attempt to exploit the potential of the monoecious fiber hemp cv. Futura 75 in new fields besides textile, cosmetics and food industry, its crop-residue given by leaves and inflorescences was subjected to hydrodistillation to obtain the essential oils. These are niche products representing an ideal candidate for the development of natural insecticides for the control and management of mosquito vectors, houseflies and moth pests. After GC-MS analysis highlighting a safe and legal chemical profile (THC in the range 0.004–0.012% dw), the leaf and inflorescence essential oils were investigated for the insecticidal potential against three insect targets: the larvae of Culex quinquefasciatus and Spodoptera littoralis and the adults of Musca domestica. The essential oil from inflorescences, showing (E)-caryophyllene (21.4%), myrcene (11.3%), cannabidiol (CBD, 11.1%), α-pinene (7.8%), terpinolene (7.6%), and α-humulene (7.1%) as the main components, was more effective than leaf oil against these insects, with LD50 values of 65.8 μg/larva on S. littoralis, 122.1 μg/adult on M. domestica, and LC50 of 124.5 μl/l on C. quinquefasciatus larvae. The hemp essential oil moderately inhibited the acetylcholinesterase (AChE), which is a target enzyme in pesticide science. Overall, these results shed light on the future application of fiber hemp crop-residue for the development of effective, eco-friendly and sustainable insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Adams RP (2007) Identification of EO components by gas chromatography/mass spectrometry. 4th edn. Carol Stream, Allured

  • Amaducci MT (1969) Ricerche sulla tecnica colturale delle canape monoiche utilizzate per la fabbricazione di carte pregiate. Sementi Elette 3:166–177

    Google Scholar 

  • Baldwin JL, Graves JB (1991) Cotton insect pest management. LA Coop Ext Serv Bull 1829

  • Bedini S, Flamini G, Cosci F, Ascrizzi R, Benelli G, Conti B (2016) Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh watersnail Physella acuta. Ind Crop Prod 85:318–323

    Article  CAS  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  Google Scholar 

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Article  Google Scholar 

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer – a brief review. Enzym Microb Technol 95:58–68

    Article  CAS  Google Scholar 

  • Benelli G (2017a) Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology – GREEN-NANO-PEST&DRUGS. Environ Sci Poll Res. https://doi.org/10.1007/s11356-017-9960-y

  • Benelli G (2017b) Commentary: data analysis in bionanoscience – issues to watch for. J Clust Sci 28:11–14

    Article  CAS  Google Scholar 

  • Benelli G (2018) Gold nanoparticles – against parasites and insect vectors. Acta Tropica. https://doi.org/10.1016/j.actatropica.2017.10.021

  • Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96

    Article  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754

    Article  Google Scholar 

  • Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen, https://doi.org/10.1127/entomologia/2017/0496

  • Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131–2137

    Article  Google Scholar 

  • Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017a) Synergized mixtures of Apiaceae EOs and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind Crop Prod 96:186–195

  • Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, Nicoletti M, Senthil-Nathan S, Mehlhorn H, Maggi F (2017b) Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: synergistic and antagonistic effects. Parasitol Int 66:166–171

  • Bertoli A, Tozzi S, Pistelli L, Angelini LG (2010) Fiber hemp inflorescences: from crop-residues to essential oil production. Ind Crop Prod 32:329–337

    Article  CAS  Google Scholar 

  • Borges RS, Batista Jr J, Viana RB, Baetas AC, Orestes E, Andrade MA, Káthia M, Honório KM, Albérico BF, da Silva ABF (2013) Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules 18:12663–12674

  • Callaway JC (2004) Hempseed as a nutritional resource, an overview. Euphytica 140:65–72

    Article  Google Scholar 

  • Calzolari D, Magagnini G, Lucini L, Grassi G, Appendino GB, Amaducci S (2017) High added-value compounds from Cannabis threshing residues. Ind Crop Prod 108:558–563

    Article  CAS  Google Scholar 

  • Cheng SS, Lin CY, Chung MJ, Liu YH, Huang CG, Chang ST (2013) Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crop Prod 47:310–315

    Article  CAS  Google Scholar 

  • Choi WS, Park BS, Lee YH, Jang DY, Yoon HY, Lee SE (2006) Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Prot 25:398–401

    Article  CAS  Google Scholar 

  • Christoph M, Mediavilla V (1998) Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. J Int Hemp Association 5:16–20

    Google Scholar 

  • Del Gatto A, Laureti D, Crescentini P (2001) Un biennio di valutazione di varietà di canapa. Inf Agrar 16:39–42

    Google Scholar 

  • ElSohly M, Gul W (2014) Constituents of Cannabis Sativa. In: Pertwee RG (ed) Handbook of cannabis. Oxford University Press, Oxford, pp 3–22

    Chapter  Google Scholar 

  • EPPO (1990) Specific quarantine requirements. EPPO Technical Documents, No. 1008. European and Mediterranean Plant Protection Organization, Paris, France

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  • FFNSC 2 (2012) Flavors and Fragrances of Natural and Synthetic Compounds. Mass spectral database. Kyoto, Shimadzu Corps

  • Fournier G, Paris MR, Fourniat MC, Quero AM (1978) Activité bactériostatique d’huiles essentielles de Cannabis sativa L. [Bacteriostatic activity of Cannabis sativa L. essential oil.] Ann Pharm Fr 36:603–606

    CAS  Google Scholar 

  • Hall W, Solowij N (1998) Adverse effects of cannabis. Lancet 352:1611–1616

    Article  CAS  Google Scholar 

  • Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (2)D9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95:8268–8273

    Article  CAS  Google Scholar 

  • Happyana N, Kayser O (2016) Monitoring metabolite profiles of Cannabis sativa L. trichomes during flowering period using 1H NMR-based metabolomics and real-time PCR. Planta Med 82:1217–1223

    Article  CAS  Google Scholar 

  • Hemphill JK, Turner JC, Mahlberg PG (1980) Cannabinoid content of individual plant organs from different geographical strains of Cannabis sativa L. J Nat Prod 43:112–122

    Article  CAS  Google Scholar 

  • Hendriks H, Malingre TM, Batterman S, Bos R (1975) Mono- and sesquiterpene hydrocarbons of the essential oil of Cannabis sativa. Phytochemistry 14:814–815

    Article  CAS  Google Scholar 

  • Isman B (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  Google Scholar 

  • Jalees S, Sharma SK, Rahman SJ, Verghese T (1993) Evaluation of insecticidal properties of an indigenous plant, Cannabis sativa Linn., against mosquito larvae under laboratory conditions. J Entomol Res 17:117–120

    Google Scholar 

  • Jyotshna SN, Singh B, Chanda D, Shanker K (2015) Chemical composition and acetylcholinesterase inhibitory activity of Artemisia maderaspatana essential oil. Pharm Biol 53:1677–1683

    Article  CAS  Google Scholar 

  • Malingre T, Hendriks H, Batterman S, Bos R (1973) The presence of cannabinoid components in the essential oil of Cannabis sativa L. Pharrn Weekbl 108:549–552

    CAS  Google Scholar 

  • Malingré T, Hendriks H, Batterman S, Bos R, Visser J (1975) The essential oil of Cannabis sativa. Planta Med 28:56–61

    Article  Google Scholar 

  • McPartland JM (1997) Cannabis as repellent and pesticide. J Int Hemp Association 4:89–94

    Google Scholar 

  • Mediavilla V, Steinemann S (1997) Essential oil of Cannabis sativa L. strains. J Int Hemp Association 4:80–82

    Google Scholar 

  • Miyazawa M, Nakahashi H, Usami A, Matsuda N (2016) Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC. J Nat Med 70:282–289

    Article  CAS  Google Scholar 

  • Morshedloo MR, Quassinti L, Bramucci M, Lupidi G, Maggi F (2017) Chemical composition, antioxidant activity and cytotoxicity on tumor cells of the essential oil from flowers of Magnolia grandiflora cultivated in Iran. Nat Prod Res https://doi.org/10.1080/14786419.2017.1303699

  • Mukhtar T, Kayani MZ, Hussain MA (2013) Nematicidal activities of Cannabis sativa L. and Zanthoxylum alatum Roxb. Against Meloidogyne incognita. Ind Crop Prod 42:447–453

    Article  Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    Article  Google Scholar 

  • Nissen L, Zatta A, Stefanini I, Grandi S, Sgorbati B, Biavati B, Monti A (2010) Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.) Fitoterapia 81:413–419

    Article  CAS  Google Scholar 

  • NIST 08 (2008) National Institute of Standards and Technology mass spectral library (NIST/EPA/NIH). Gaithersburg, National Institute of Standards and Technology

  • Novak J, Franz C (2003) Composition of the essential oils and extracts of two populations of Cannabis sativa L. ssp. spontanea from Austria. J Essent Oil Res 15:158–160

  • Novak J, Zitterl-Eglseer K, Deansand SG, Franz C (2001) Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour Fragr J 16:259–262

    Article  CAS  Google Scholar 

  • OEPP/EPPO (2015) EPPO Standards PM 7/124(1) Diagnostic protocol for Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. Bull OEPP/EPPO Bull 34:257–270

    Google Scholar 

  • Pate DW (1994) Chemical ecology of Cannabis. J Int Hemp Association 1:32–37

    Google Scholar 

  • Pavela R (2008) Acute and synergistic effects of some monoterpenoid essential oil compounds on the house fly (Musca domestica L.) J Essen Oil Bear Pl 11:451–459

    Article  CAS  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187

    Article  CAS  Google Scholar 

  • Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects - a review. Plant Prot Sci 52:229–241

    Article  Google Scholar 

  • Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors - a review. Exp Parasitol 167:103–108

  • Pavela R, Benelli G (2016b) EOs as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

  • Pavela R, Žabka M, Bednář J, Tříska J, Vrchotová N (2016) New knowledge for yield, composition and insecticidal activity ofessential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind Crop Prod 83:275–282

  • Pereira DM, Ferreres F, Oliveira J, Valentão P, Andrade PB, Sottomayor M (2009) Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food Chem Toxicol 47:1349–1354

    Article  CAS  Google Scholar 

  • Perry NS, Houghton PJ, Theobald A, Jenner P, Perry EK (2000) In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol 52:895–902

    Article  CAS  Google Scholar 

  • Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147:S163–S171

    Article  CAS  Google Scholar 

  • Potter DJ (2009) The Propagation, Characterisation and Optimisation of Cannabis sativa L. as a Phytopharmaceutical. Pharmaceutical Sciences, King’s College, London

    Google Scholar 

  • Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6

    Article  Google Scholar 

  • Regulation (EC) No 206/ (2004) of the European Parliament and of the Council amending Regulation (EC) No 2316/1999 laying down detailed rules for the application of Council Regulation (EC) No 1251/1999 establishing a support system for producers of certain arable crops. Offic J Eur Commun L34: 33

  • Rehman MSU, Rashid N, Saif A, Mahmood T, Han J-I (2013) Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew Sust Energ Rev 18:154–164

    Article  Google Scholar 

  • Ross SA, ElSohly MA (1996) The volatile oil composition of fresh and air-dried buds of Cannabis sativa. J Nat Prod 59:49–51

    Article  CAS  Google Scholar 

  • Shah RM, Abbas N, Shad SA, Sial AA (2015) Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L. Parasitol Res 114:487–494

    Article  Google Scholar 

  • Struik PC, Amaducci S, Bullard MJ, Stutterheim NC, Venturi G, Cromack HTH (2000) Agronomy of fiber hemp (Cannabis sativa L.) in Europe. Ind Crop Prod 11:107–118

    Article  Google Scholar 

  • Thalhamer B, Himmelsbach M, Buchberger W (2017) Trace level determination of Δ9-tetrahydrocannabinol in a perfume using liquid chromatography high resolution tandem mass spectrometry and gas chromatography mass spectrometry. Flavour Fragr J 32:46–53

    Article  CAS  Google Scholar 

  • Thomas TG, Sharma SK, Prakash A, Sharma BR (2000) Insecticidal properties of essential oil of Cannabis sativa Linn. Against mosquito larvae. Entomon 25:21–24

    CAS  Google Scholar 

  • Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis 44:198–204

    CAS  Google Scholar 

  • Vadivalagan C, Pushparaj K, Murugan K, Panneerselvam C, Del Serrone P, Benelli G (2017) Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop 169:43–50

    Article  CAS  Google Scholar 

  • Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JED (2014) Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:2647–2654

    Article  Google Scholar 

  • Verma RS, Padalia RC, Verma SK, Chauhan A, Darokar MP (2014) The essential oil of ‘bhang’ (Cannabis sativa L.) for non-narcotic applications. Curr Sci 107:645–650

    Google Scholar 

  • Wanas AS, Radwan MM, Mehmedic Z, Jacob M, Khan IA, Elsohly MA (2016) Antifungal activity of the volatiles of high potency Cannabis sativa L. against Cryptococcus neoformans. Rec Nat Prod 10:214–220

    CAS  Google Scholar 

  • WHO (1991) The housefly. Training and information guide (intermediate level). Geneva, (unpublished document WHO/VBC/90.987; available on request from Division of Control of Tropical Diseases, World Health Organization, 1211Geneva 27, Switzerland)

  • WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides. CTD/WHOPES/IC/96.1. Geneva. http://www.who.int/iris/handle/10665/65962

  • WHO (2012) Handbook for integrated vector management. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

Philippe Garrigues and three anonymous reviewers kindly improved an earlier version of our manuscript. The authors are grateful to Michele Grossi, Luigi Corradini, and La Biologica Soc. Coop. Agr. for kindly providing the crop-residue of hemp cv. Futura 75 for studies. Roman Pavela would like to thank the Ministry of Agriculture of the Czech Republic for its financial support concerning botanical pesticide and basic substances research (Project No. RO0417). Filippo Maggi is grateful to University of Camerino (Fondo di Ateneo per la Ricerca, FAR 2014/2015, FPI 000044) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benelli, G., Pavela, R., Lupidi, G. et al. The crop-residue of fiber hemp cv. Futura 75: from a waste product to a source of botanical insecticides. Environ Sci Pollut Res 25, 10515–10525 (2018). https://doi.org/10.1007/s11356-017-0635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0635-5

Keywords

Navigation