Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3115–3128 | Cite as

Historical accumulation of potentially toxic trace elements resulting from mining activities in estuarine salt marshes sediments of the Asturias coastline (northern Spain)

  • Efrén Garcia-OrdialesEmail author
  • Pablo Cienfuegos
  • Nieves Roqueñí
  • Stefano Covelli
  • German Flor-Blanco
  • Giorgio Fontolan
  • Jorge Loredo
Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation


The extensive extraction activity of mercury ores in Asturias (northwest Spain), also rich in As and Sb, has impacted the Nalón river estuary. The objective of this research was to assess the historical evolution of As-Hg-Sb accumulation in the salt marsh sediments of this area. For this purpose, sediment cores were collected from two different salt marshes (eastern and western river banks) in the estuarine environment to evaluate the degree of anthropogenic enrichment and the geochronology of As-Hg-Sb accumulation. Core subsampling was performed by cutting 2-cm-thick slices of sediments. The subsamples were then analysed for several physical and chemical parameters. Sedimentation rate was assessed by measuring short-lived radionuclides (excess 210Pb and 137Cs). Pre-mining levels of As-Hg-Sb were observed at core depths below 50 cm. In the less extended salt marsh (eastern river bank), maximum As-Hg-Sb concentrations of 87.48, 3.66, and 5.75 μg·g−1, respectively, were found at the core top as a consequence of long-term mining activity in the area. The vertical distribution of As-Hg-Sb was influenced by the single-point contamination sources, whereas grain-size variability and diagenetic remobilisation did not seem affected. Geochronological measurements showed that the depositional fluxes of As-Hg-Sb were influenced by anthropogenic input after 1900, when mining activity in the area was most intense. Hg mining ceased in 1969; however, the corresponding core profiles did not show a drastic decreasing trend in element fluxes, implying that the river drainage basin retains some “memory” of contamination which affects riverine sediments. A preliminary gross estimation of total As-Hg-Sb “trapped” in the Nalón river salt marsh sediments amounted to approximately 18.7, 1.0, and 0.7 t, respectively. These morphological structures suffer erosive processes, thus representing a potential source of these elements associated with sediments; consequently, management conservation and monitoring of salt marshes should be taken into consideration from this environmental point of view.


Geochronology Salt marshes Sediments Mining Mercury Arsenic 



This study was co-supported by the Spanish Ministry of Economy, Industry and Competitiveness through the Research Project METRAMER [grant number MINECO-13-CGL2013-44980-R] and the Asturias Ministry of Education and Science [grant number FC-15-GRUPIN14–067]. The authors are sincerely grateful to two anonymous reviewers for their help in improving an early version of the manuscript. Karry Close is warmly acknowledged for proofreading the final version of the manuscript.


  1. Allen JRL (1989) Evolution of salt-marsh cliffs in muddy and sandy systems: a qualitative comparison of British West-Coast estuaries. Earth Surf Process Landf 14(1):85–92CrossRefGoogle Scholar
  2. Allen JRL, Rae JE (1988) Vertical salt-marsh accretion since the Roman Period in the Severn Estuary, southwest Britain. Mar Geol 83(1–4):225–235CrossRefGoogle Scholar
  3. Andersen TJ (2017) Some practical considerations regarding the application of 210Pb and 137Cs dating to estuarine sediments. In: Applications of paleoenvironmental techniques in estuarine studies. Springer Netherlands, Dordrecht, pp 121–140CrossRefGoogle Scholar
  4. Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. In: Paleolimnology. Springer Netherlands, Dordrecht, pp 29–35CrossRefGoogle Scholar
  5. Audry S, Blanc G, Schäfer J (2005) The impact of sulphide oxidation on dissolved metal (Cd, Zn, Cu, Cr, Co, Ni, U) inputs into the Lot–Garonne fluvial system (France). Appl Geochem 20(5):919–931CrossRefGoogle Scholar
  6. Birch GF (2017) Determination of sediment metal background concentrations and enrichment in marine environments—a critical review. Sci Total Environ 580:813–831CrossRefGoogle Scholar
  7. Buchman MF (2008) NOAA Screening Quick Reference Tables. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, Seattle WA, p. 2Google Scholar
  8. Bricker SB (1996) Retention of sediment and metals by Narragansett Bay subtidal and marsh environments: an update. Sci Total Environ 179:27–46CrossRefGoogle Scholar
  9. CCME (2001) Canadian sediment quality guidelines for the protection of aquatic life. Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  10. Cearreta A, Edeso JM, Ugarte FM (1992) Cambios del nivel del mar durante el Cuaternario reciente en el Golfo de Bizkaia. In: The late Quaternary in the Western Pyrenean Region. UPV, Bilbao, pp 57–94Google Scholar
  11. Cearreta A, Leorri ES (2009) El registro geológico de la transformación ambiental de la ría de Bilbao durante el Holoceno y el Antropoceno. Sociedad de ciencias aranzadi zientzi elkartea, San SebastianGoogle Scholar
  12. Chen CW, Kao CM, Chen CF, Dong CD (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66(8):1431–1440CrossRefGoogle Scholar
  13. Conaway CH, Watson EB, Flanders JR, Flegal AR (2004) Mercury deposition in a tidal marsh of south San Francisco Bay downstream of the historic New Almaden mining district, California. Mar Chem 90(1):175–184CrossRefGoogle Scholar
  14. Connor RF, Chmura GL, Beecher CB (2001) Carbon accumulation in Bay of Fundy salt marshes: implications for restoration of reclaimed marshes. Glob Biogeochem Cycles 15(4):943–954CrossRefGoogle Scholar
  15. Covelli S, Langone L, Acquavita A, Piani R, Emili A (2012) Historical flux of mercury associated with mining and industrial sources in the Marano and Grado lagoon (northern Adriatic Sea). Estuar Coast Shelf Sci 13:7–19CrossRefGoogle Scholar
  16. Covelli S, Fontolan G, Faganeli J, Ogrinc N (2006) Anthropogenic markers in the Holocene stratigraphic sequence of the Gulf of Trieste (northern Adriatic Sea). Mar Geol 230(1):29–51CrossRefGoogle Scholar
  17. Cuvilliez A, Lafite R, Deloffre J, Lemoine M, Langlois E, Sakho I (2015) River flow control on intertidal mudflat sedimentation in the mouth of a macrotidal estuary. Geomorphology 239:174–181CrossRefGoogle Scholar
  18. De Cort M, Dubois G, Fridman SD, Germenchuk MG, Izrael YA, Janssens A, Jones AR, Kelly GN, Kvasnikova EV, Matveenko II, Nazarov IM, Pokumeiko YM, Sitak VA, Stukin ED, Tabachny LY, Tsaturov YS, Avdyushin SI (1998) Atlas of Caesium Deposition on Europe after the Chernobyl Accident. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  19. Duarte B, Vaz N, Valentim JM, Dias JM, Silva H, Marques JC, Sleimi N, Caçador I (2017) Revisiting the outwelling hypothesis: modelling salt marsh detrital metal exports under extreme climatic events. Mar Chem 191:24–33CrossRefGoogle Scholar
  20. Flor G, Ceñal RC, González MS, Ortega MI (1998) Aspectos morfológicos, dinámicos y sedimentológicos del estuario del Nalón (Asturias, noroeste de España). Trab Geol 20(20):3–39Google Scholar
  21. Flor-Blanco G, Pando L, Morales JA, Flor G (2015) Evolution of beach–dune fields systems following the construction of jetties in estuarine mouths (Cantabrian coast, NW Spain). Environ Earth Sci 73(3):1317–1330CrossRefGoogle Scholar
  22. Gallego JLR, Ortiz JE, Sierra C, Torres T, Llamas JF (2013) Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000calyr BP. Sci Total Environ 454:16–29CrossRefGoogle Scholar
  23. García-Ordiales E, Loredo J, Esbrí JM, Lominchar MA, Millán R, Higueras P (2014) Stream bottom sediments as a mean to assess metal contamination in the historic mining district of Almadén (Spain). Int J Min Reclam Environ 28(6):357–376CrossRefGoogle Scholar
  24. Garcia-Ordiales E, Loredo J, Cienfuego P, Covelli S, Flor-Blanco G, Fontolan G, Roqueñí N, Ordoñez A, Flor G (2015) Metales pesados y metaloides en sedimentos de las Marismas del Estuario del río Nalón (Norte de España). Comunicaçõe Geológicas 102:69–72Google Scholar
  25. Fontolan G, Pillon S, Bezzi A, Villalta R, Lipizer M, Triches A, D’Aietti A (2012) Human impact and the historical transformation of saltmarshes in the Marano and Grado Lagoon, northern Adriatic Sea. Estuar Coast Shelf Sci 113:41–56CrossRefGoogle Scholar
  26. Hammarstrom JM, Seal RR, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215(1):407–431CrossRefGoogle Scholar
  27. Hasan AB, Kabir S, Reza AS, Zaman MN, Ahsan A, Rashid M (2013) Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. J Geochem Explor 125:130–137CrossRefGoogle Scholar
  28. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25(1):101–110CrossRefGoogle Scholar
  29. Idaszkin YL, del Pilar Alvarez M, Carol E (2017) Geochemical processes controlling the distribution and concentration of metals in soils from a Patagonian (Argentina) salt marsh affected by mining residues. Sci Total Environ 596:230–235CrossRefGoogle Scholar
  30. IGME (2012) Geochemical atlas of Spain (Atlas Geoquímico de España). Instituto Geológico y Minero de España, Madrid In SpanishGoogle Scholar
  31. Julivert, M., Fontbote, J. M., Ribeiro, A., Conde, L. (1972). Mapa tectónica de la Península Ibérica y Baleares 1∶ 1′000 000. Inst. Geol. Min. Esp. MadridGoogle Scholar
  32. Larsonneur C (1975) Tidal deposits, Mont Saint-Michel Bay, France. In: Tidal deposits. Springer Berlin, Heidelberg, pp 21–30CrossRefGoogle Scholar
  33. Luque C (1985) Las mineralizaciones de mercurio de la Cordillera Cantábrica. PhD Thesis, University of Oviedo, Spain In spanishGoogle Scholar
  34. Luque C, Gutiérrez Claverol M (2006) La minería del mercurio en Asturias. Rasgos históricos. Ed. Eujoa, Mieres, España, In Spanish, p 560Google Scholar
  35. Mahu E, Nyarko E, Hulme S, Swarzenski P, Asiedu DK, Coale KH (2016) Geochronology and historical deposition of trace metals in three tropical estuaries in the Gulf of Guinea. Estuar Coast Shelf Sci 177:31–40CrossRefGoogle Scholar
  36. Mantecón VR, Uceda AC (1992) Análisis histórico de la evolución superficial de los estuarios del País Vasco. Lurralde: Investigación y espacio 15:199–227Google Scholar
  37. Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals, vol 378. Oxford university press, Oxford, p 155Google Scholar
  38. Moreno T, Higueras P, Jones T, McDonald I, Gibbons W (2005) Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: implications for inhalation hazards around old mines. Atmos Environ 39(34):6409–6419CrossRefGoogle Scholar
  39. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118Google Scholar
  40. Müller G (1981) Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflu¨sse. Chemiker-Zeitung 6:157–164Google Scholar
  41. Ordóñez A, Álvarez R, Loredo J (2013) Asturian mercury mining district (Spain) and the environment: a review. Environ Sci Pollut Res 20(11):7490–7508CrossRefGoogle Scholar
  42. Pasternack GB, Brown KJ (2006) Natural and anthropogenic geochemical signatures of floodplain and deltaic sedimentary strata, Sacramento–San Joaquin Delta, California, USA. Environ Pollut 141(2):295–309CrossRefGoogle Scholar
  43. Petranich E, Acquavita A, Covelli S, Emili A (2017) Potential bioaccumulation of trace metals in halophytes from salt marshes of a northern Adriatic coastal lagoon. J Soils Sediments 17:1986–1998CrossRefGoogle Scholar
  44. Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19(2):215–233CrossRefGoogle Scholar
  45. Roner M, D'Alpaos A, Ghinassi M, Marani M, Silvestri S, Franceschinis E, Realdon N (2016) Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the Venice lagoon, Italy. Adv Water Resour 93:276–287CrossRefGoogle Scholar
  46. Sahu BK (1964) Depositional mechanisms from the size analysis of clastic sediments. J Sediment Res 34(1):73–83Google Scholar
  47. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor PJ, Olsson S, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfeldt A, Tarvainen T (eds) (2005) FOREGS geochemical atlas of Europe, part 1—background information, methodology and maps. geological survey of Finland, EspooGoogle Scholar
  48. Sanchez-Cabeza JA, Ruiz-Fernández AC, Ontiveros-Cuadras JF, Bernal LHP, Olid C (2014) Monte Carlo uncertainty calculation of 210 Pb chronologies and accumulation rates of sediments and peat bogs. Quat Geochronol 23:80–93CrossRefGoogle Scholar
  49. Shotyk W (2002) The chronology of anthropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposits from Switzerland. Sci Total Environ 292(1):19–31CrossRefGoogle Scholar
  50. Verney R, Lafite R, Brun-Cottan J-P, Le Hir P (2011) Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modeling. Cont Shelf Res 31(10):S64–S83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.ISYMA Research Group, Mining, Energy and Materials Engineering SchoolUniversity of OviedoOviedoSpain
  2. 2.Department of Mathematics and GeosciencesUniversity of TriesteTriesteItaly
  3. 3.Co.N.I.S.Ma. Consorzio Nazionale Interuniversitario per le Scienze del MareRomeItaly
  4. 4.GeoQUO Research Group, Department of GeologyUniversity of OviedoOviedoSpain

Personalised recommendations