Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3184–3195 | Cite as

Coupling population dynamics with earth system models: the POPEM model

  • Andrés NavarroEmail author
  • Raúl Moreno
  • Alfonso Jiménez-Alcázar
  • Francisco J. Tapiador
Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation


Precise modeling of CO2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.


Pollution research Climate modeling System dynamics Anthropogenic emissions Climate change Population 



Funding information

Funding from projects CGL2013-48367-P, CGL2016-80609-R (Ministerio de Economía y Competitividad, Ciencia e Innovacion), and CYTEMA (UCLM) is gratefully acknowledged. ANM acknowledges support from grant FPU 13/02798.


  1. Abel GJ, Sander N (2014) Quantifying global international migration flows. Science (80- ) 343:1520–1522. doi:
  2. Adepoju A (1995) Emigration dynamics in Sub-Saharan Africa. Int Migr 33:313–390. Google Scholar
  3. Andres RJ, Boden TA, Bréon F-M et al (2012) A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9:1845–1871. Google Scholar
  4. Andres RJ, Boden TA, Higdon DM (2016) Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example. Atmos Chem Phys 16:14979–14995. Google Scholar
  5. Andres RJ, Marland G, Fung I, Matthews E (1996) A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990. Glob Biogeochem Cycles 10:419–429. Google Scholar
  6. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134. Google Scholar
  7. Asis MMB, Piper N (2008) Researching international labor migration in Asia. Sociol Q 49:423–444. Google Scholar
  8. Atash F (2007) The deterioration of urban environments in developing countries: mitigating the air pollution crisis in Tehran, Iran. Cities 24:399–409. Google Scholar
  9. Ballas D, Clarke G, Dorling D, Eyre H, Thomas B, Rossiter D (2005a) SimBritain: a spatial microsimulation approach to population dynamics. Popul Space Place 11:13–34. Google Scholar
  10. Ballas D, Clarke GP, Wiemers E (2006) Spatial microsimulation for rural policy analysis in Ireland: the implications of CAP reforms for the national spatial strategy. J Rural Stud 22:367–378. Google Scholar
  11. Ballas D, Clarke GP, Wiemers E (2005b) Building a dynamic spatial microsimulation model for Ireland. Popul Space Place 11:157–172. Google Scholar
  12. Beauchemin C, Bocquier P (2004) Migration and urbanisation in francophone West Africa: an overview of the recent empirical evidence. Urban Stud 41:2245–2272. Google Scholar
  13. Bloom DE, Canning D, Mansfield RK, Moore M (2007) Demographic change, social security systems, and savings. J Monet Econ 54:92–114. Google Scholar
  14. Bokhari FAS, Gai Y, Gottret P (2007) Government health expenditures and health outcomes. Health Econ 16:257–273. Google Scholar
  15. Boroffka NGO, Obernhänsli H, Achatov GA, Aladin N V., Baipakov KM, Erzhanova A, Hörnig A, Krivonogov S, Lobas DA, Savel’eva T V., Wünnemann B (2005) Human settlements on the northern shores of Lake Aral and water level changes. 10:71–85Google Scholar
  16. Butler TM, Lawrence MG, Gurjar BR, van Aardenne J, Schultz M, Lelieveld J (2008) The representation of emissions from megacities in global emission inventories. Atmos Environ 42:703–719. Google Scholar
  17. Carr DL, Suter L, Barbieri A (2005) Population dynamics and tropical deforestation: state of the debate and conceptual challenges. Popul Environ 27:89–113. Google Scholar
  18. Caschili S, De Montis A, Trogu D (2014) Accessibility and rurality indicators for regional development. Comput Environ Urban Syst.
  19. Castles S (2000) International migration at the beginining of the twenty-first century: global trends and issues. Int Soc Sci J 52:269–281. Google Scholar
  20. Chiu C (1990) Nonlinear age-dependent models for prediction of population growth. Math Biosci 99:119–133. Google Scholar
  21. Cochrane MA, Barber CP (2009) Climate change, human land use and future fires in the Amazon. 15:601–612. doi:
  22. Cole A, Flenley J (2008) Modelling human population change on Easter Island far-from-equilibrium. Quat Int 184:150–165. Google Scholar
  23. Coleman D (2008) The demographic effects of international migration in Europe. Oxford Rev Econ Policy 24:452–476. Google Scholar
  24. Collins WD, Craig AP, Truesdale JE, Di Vittorio AV, Jones AD, Bond-Lamberty B, Calvin KV, Edmonds JA, Kim SH, Thomson AM, Patel P, Zhou Y, Mao J, Shi X, Thornton PE, Chini LP, Hurtt GC (2015) The integrated Earth system model version 1: formulation and functionality. Geosci Model Dev 8:2203–2219. Google Scholar
  25. Costa-Silva DG, Nunes MEM, Wallau GL, Martins IK, Zemolin APP, Cruz LC, Rodrigues NR, Lopes AR, Posser T, Franco JL (2015) Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. Environ Sci Pollut Res 22:15526–15535. Google Scholar
  26. Dash DP (1994) System dynamics: changing perspectives. Syst Pract Action Res 7:87–98. Google Scholar
  27. Davis KF, D’Odorico P, Laio F et al (2013) Global Spatio-temporal patterns in human migration: a complex network perspective. PLoS One 8:e53723. Google Scholar
  28. de Beer J, Raymer J, van der Erf R, van Wissen L (2010) Overcoming the problems of inconsistent international migration data: a new method applied to flows in Europe. Eur J Popul 26:459–481. Google Scholar
  29. Dias D, Tchepel O (2014) Modelling of human exposure to air pollution in the urban environment: a GPS-based approach. Environ Sci Pollut Res 21:3558–3571. Google Scholar
  30. Docquier F, Rapoport H (2012) Globalization, brain drain, and development. J Econ Lit 50:681–730. Google Scholar
  31. Doll CH, Muller J-P, Elvidge CD (2000) Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO A J Hum Environ 29:157–162. Google Scholar
  32. Doxsey-Whitfield E, MacManus K, Adamo SB, Pistolesi L, Squires J, Borkovska O, Baptista SR (2015) Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Pap Appl Geogr 1:226–234. Google Scholar
  33. Duren RM, Miller CE (2012) Measuring the carbon emissions of megacities. Nat Clim Chang 2:560–562. Google Scholar
  34. Eberlein RL, Thompson JP (2013) Precise modeling of aging populations. Syst Dyn Rev 29:87–101. Google Scholar
  35. El Araby M (2002) Urban growth and environmental degradation: the case of Cairo, Egypt. Cities 19:389–400. Google Scholar
  36. Flato GM (2011) Earth system models: an overview. Wiley Interdiscip Rev Clim Chang 2:783–800. Google Scholar
  37. Forrester JW, Senge PM (1978) Tests for building confidence in system dynamics models. System Dynamics Group, Sloan School of Management, Massachusetts Institute of TechnologyGoogle Scholar
  38. Friedlingstein P, Andrew RM, Rogelj J et al (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715. Google Scholar
  39. Gately CK, Hutyra LR, Sue Wing I (2015) Cities, traffic, and CO2: a multidecadal assessment of trends, drivers, and scaling relationships. Proc Natl Acad Sci U S A 112:4999–5004. Google Scholar
  40. Gately CK, Hutyra LR, Wing IS, Brondfield MN (2013) A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional planning. Environ Sci Technol 47:2423–2430. Google Scholar
  41. Givati A, Rosenfeld D, Givati A, Rosenfeld D (2004) Quantifying precipitation suppression due to air pollution. J Appl Meteorol 43:1038–1056.<1038:QPSDTA>2.0.CO;2 Google Scholar
  42. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42:1593–1606. Google Scholar
  43. Han L, Zhou W, Pickett STA, Li W, Li L (2016) An optimum city size? The scaling relationship for urban population and fine particulate (PM2.5) concentration. Environ Pollut 208:96–101. Google Scholar
  44. Hatna E, Benenson I (2010) The Schelling model of ethnic residential dynamics: beyond the integrated-segregated dichotomy of patterns. J Artif Soc Soc Simul 15:6Google Scholar
  45. Hayden FG (2006) The inadequacy of Forrester system dynamics computer programs for institutional principles of hierarchy, feedback, and openness. J Econ Issues:527–535Google Scholar
  46. Hegerl G, Luterbacher J, Gonzalez-Rouco F, Tett SFB, Crowley T, Xoplaki E (2011) Influence of human and natural forcing on European seasonal temperatures. Nat Geosci 4(2):99–103. Google Scholar
  47. Henning S, Hovy B (2011) Data sets on international migration. Int Migr Rev 45:980–985Google Scholar
  48. Higgins M, Williamson JG (1997) Age structure dynamics in Asia and dependence on foreign capital. Popul Dev Rev 23:261. Google Scholar
  49. Hinde A (1998) Demographic methods. Arnold, LondonGoogle Scholar
  50. Holy M, Schmidt G, Schröder W (2011) Potential malaria outbreak in Germany due to climate warming: risk modelling based on temperature measurements and regional climate models. Environ Sci Pollut Res 18:428–435. Google Scholar
  51. Hunke EC, Lipscomb WH (2008) CICE: The Los Alamos Sea Ice Model user’s manual. Los Alamos National Laboratory Tech. Rep.Google Scholar
  52. Hurrell JW, Holland MM, Gent PR et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. Google Scholar
  53. Int Panis L, Broekx S, Liu R (2006) Modelling instantaneous traffic emission and the influence of traffic speed limits. Sci Total Environ 371:270–285. Google Scholar
  54. Isserman AM (1993) The right people, the right rates: making population estimates and forecasts with an interregional cohort-component model. J Am Plan Assoc 59:45–64. Google Scholar
  55. Kapitza SP (2010) On the theory of global population growth. Physics-Uspekhi 53:1287–1296. Google Scholar
  56. Kerbyson DJ, Jones PW (2005) A performance model of the parallel ocean program. Int J High Perform Comput Appl 19:261–276. Google Scholar
  57. Keys P (1990) System dynamics as a systems-based problem-solving methodology. Syst Pract 3:479–493. Google Scholar
  58. Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86. Google Scholar
  59. Kunkel KE, Pielke RA, Changnon SA, Kunkel KE, Jr RAP, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80:1077–1098.<1077:TFIWAC>2.0.CO;2 Google Scholar
  60. Land KC (1986) Methods for national population forecasts: a review. J Am Stat Assoc 81:888–901. Google Scholar
  61. Lane DC (2000) Should system dynamics be described as a “hard” or “deterministic” systems approach? Syst Res Behav Sci 17:3–22Google Scholar
  62. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 3-3:1–27. Google Scholar
  63. Le QB, Park SJ, Vlek PLG (2010) Land use dynamic simulator (LUDAS): a multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system: 2. Scenario-based application for impact assessment of land-use policies. Ecol Inform 5:203–221. Google Scholar
  64. Le Quéré C, Moriarty R, Andrew RM et al (2015) Global Carbon Budget 2015. Earth Syst Sci Data 7:349–396. Google Scholar
  65. Li Y-H, Chen P-Y, Lo W-H, Tung C-P (2013) Integrated water resources system dynamics modeling and indicators for sustainable rural community:1Google Scholar
  66. Liang Z, Morooka H (2004) Recent trends of emigration from China: 1982-2000. Int Migr 42:145–164. Google Scholar
  67. Lipscomb WH, Fyke JG, Vizcaino M et al (2013) Implementation and initial evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. J Clim 26:7352–7371. Google Scholar
  68. Lisenkova K, Mérette M, Wright R (2013) Population ageing and the labour market: modelling size and age-specific effects. Econ Model 35:981–989. Google Scholar
  69. Manners J, Thelen J-C, Petch J, Hill P, Edwards JM (2009) Two fast radiative transfer methods to improve the temporal sampling of clouds in numerical weather prediction and climate models. Q J R Meteorol Soc 135:457–468. Google Scholar
  70. Maya Sopha B, Klöckner CA, Hertwich EG (2011) Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation. Energy Policy 39:2722–2729. Google Scholar
  71. McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37:n/a-n/a. doi:
  72. McGeehin MA, Mirabelli M (2001) The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ Health Perspect:185–189Google Scholar
  73. Meadows D, Meadows RD, Jorgen DM, Randers J (2004) Limits to growth: the 30-year update. Chelsea Green PublishingGoogle Scholar
  74. Millington J (2000) Migration and age: the effect of age on sensitivity to migration stimuli. Reg Stud 34:521–533. Google Scholar
  75. Molloy R, Smith CL, Wozniak A (2011) Internal migration in the United States. J Econ Perspect 25:173–196. Google Scholar
  76. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. Google Scholar
  77. Münz R (1996) A continent of migration: European mass migration in the twentieth century. J Ethn Migr Stud 22:201–226. Google Scholar
  78. Murphy M (2016) The effect of long-term migration dynamics on population structure in England & Wales and Scotland. Popul Stud (NY) 70:149–162. Google Scholar
  79. Nguyen MTN, Locke C (2014) Rural-urban migration in Vietnam and China: gendered householding, production of space and the state. J Peasant Stud 41:855–876. Google Scholar
  80. Oleson KW, Bonan GB, Feddema J, Jackson T (2011) An examination of urban heat island characteristics in a global climate model. Int J Climatol 31:1848–1865. Google Scholar
  81. Olivier JGJ, Van Aardenne JA, Dentener FJ, Pagliari V, Ganzeveld LN, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ Sci 2:81–99. Google Scholar
  82. Ozden C, Parsons CR, Schiff M, Walmsley TL (2011) Where on earth is everybody? The evolution of global bilateral migration 1960-2000. World Bank Econ Rev 25:12–56. Google Scholar
  83. Paredes-Miranda G, Arnott WP, Moosmüller H, Green MC, Gyawali M, Paredes-Miranda G, Arnott WP, Moosmüller H, Green MC, Gyawali M (2013) Black carbon aerosol concentration in five cities and its scaling with city population. Bull Am Meteorol Soc 94:41–50. Google Scholar
  84. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. Google Scholar
  85. Pechony O, Shindell DT (2009) Fire parameterization on a global scale. J Geophys Res 114:D16115. Google Scholar
  86. Peleg N, Morin E, Gvirtzman H, Enzel Y (2012) Rainfall, spring discharge and past human occupancy in the Eastern Mediterranean. 112:769–789. doi:
  87. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119:701–706. Google Scholar
  88. Peterson PJ, Williams WP (1999) New indicator approaches for effective urban air quality management. Environ Sci Pollut Res Int 6:225–232. Google Scholar
  89. Philipov D, Schuster J (2010) Effect of migration on population size and age composition in Europe. Eur Demogr Res Pap 91. Doi: www. Oeaw. Ac. At/vid/download/edrp_2_10. Pdf.Google Scholar
  90. Premi MK, Mathur MD (1995) Emigration dynamics: the Indian context. Int Migr 33:627–666. Google Scholar
  91. Rayner PJ, Raupach MR, Paget M, Peylin P, Koffi E (2010) A new global gridded data set of CO 2 emissions from fossil fuel combustion: methodology and evaluation. J Geophys Res 115:D19306. Google Scholar
  92. Ren L, Cui E, Sun H (2014) Temporal and spatial variations in the relationship between urbanization and water quality. Environ Sci Pollut Res 21:13646–13655. Google Scholar
  93. Rephann TJ, Holm E (2004) Economic-demographic effects of immigration: results from a dynamic spatial microsimulation model. Int Reg Sci Rev 27:379–410. Google Scholar
  94. Sampson CC, Smith AM, Bates PB, Neal JC, Alfieri L (2015) Freer JE. A high-resolution global flood hazard model 51:7358–7381. Google Scholar
  95. Sarzynski A (2012) Bigger is not always better: a comparative analysis of cities and their air pollution impact. Urban Stud 49:3121–3138. Google Scholar
  96. Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1:143–186. Google Scholar
  97. Schellnhuber HJ (1999) “Earth system” analysis and the second Copernican revolution. Nature 402:C19–C23. Google Scholar
  98. Shah NM (1994) Arab labour migration: a review of trends and issues. Int Migr 32:3–28. Google Scholar
  99. Tapiador FJ, Behrangi A, Haddad ZS, Katsanos D, de Castro M (2016) Disruptions in precipitation cycles: attribution to anthropogenic forcing. J Geophys Res Atmos 121:2161–2177. Google Scholar
  100. Tapiador FJ, Navarro A, Levizzani V, García-Ortega E, Huffman GJ, Kidd C, Kucera PA, Kummerow CD, Masunaga H, Petersen WA, Roca R, Sánchez JL, Tao W-K, Turk FJ (2017) Global precipitation measurements for validating climate models. Atmos Res 197:1–20. Google Scholar
  101. Thorsson S, Lindberg F, Björklund J, Holmer B, Rayner D (2011) Potential changes in outdoor thermal comfort conditions in Gothenburg. Sweden due to climate change: The influence of urban geometry 31:324–335. Google Scholar
  102. Tilmes S, Lamarque JF, Emmons LK et al (2015) Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geosci Model Dev 8:1395–1426. Google Scholar
  103. Uhrqvist O (2015) One model to fit all? The pursuit of integrated Earth system models in GAIM and AIMES. Hist Soc Res 40:271–297. doi.  10.12759/Hsr.40.2015.2.271-297 Google Scholar
  104. Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197. Google Scholar
  105. Valenta M, Jakobsen J (2016) Moving to the Gulf: an empirical analysis of the patterns and drivers of migration to the GCC countries, 1960–2013. Labor Hist 57:627–648. Google Scholar
  106. van der Walt L, Cilliers SS, Kellner K, Du Toit MJ, Tongway D (2015) To what extent does urbanisation affect fragmented grassland functioning? J Environ Manag 151:517–530. Google Scholar
  107. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK, Vuuren DP van, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:
  108. Wang Q, Sterman JD (1985) A disaggregate population model of China. SIMULATION 45:7–14. Google Scholar
  109. Wedi NP (2014) Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? Philos Trans R Soc A Math Phys Eng Sci 372:20130289–20130289. Google Scholar
  110. Whelpton PK (1936) An empirical method of calculating future population. J Am Stat Assoc 31:457–473. Google Scholar
  111. Williams AN, Veth P, Steffen W, Ulm S, Turney CSM, Reeves JM, Phipps SJ, Smith M (2015) A continental narrative: human settlement patterns and Australian climate change over the last 35,000 years. 123:91–112. doi:
  112. Williamson JG (2013) Demographic dividends revisited. Asian Dev Rev 30:1–25. Google Scholar
  113. Wu HX, Zhou L (1996) Rural-to-urban migration in China. Asia Pac Econ Lit 10:54–67. Google Scholar
  114. Yassin MF (2013) Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction. Environ Sci Pollut Res Int 20:3975–3988. Google Scholar
  115. Zajic D, Fernando HJS, Calhoun R, Princevac M, Brown MJ, Pardyjak ER (2011) Flow and turbulence in an urban canyon. J Appl Meteorol Climatol 50:203–223. Google Scholar
  116. Zheng B, Zhang Q, Tong D, Chen C, Hong C, Li M, Geng G, Lei Y, Huo H, He K (2017) Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China. Atmos Chem Phys 17:921–933. Google Scholar
  117. Zlotnik H (1998) International migration 1965-96: an overview. Popul Dev Rev 24:429. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Andrés Navarro
    • 1
    Email author
  • Raúl Moreno
    • 1
  • Alfonso Jiménez-Alcázar
    • 1
  • Francisco J. Tapiador
    • 1
  1. 1.Institute of Environmental Sciences (ICAM)University of Castilla-La ManchaToledoSpain

Personalised recommendations