Skip to main content

Advertisement

Log in

Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain): finding criteria for baselines and delimiting regional anomalies

  • Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality. With this objective, 200 soil samples were taken from agricultural areas distributed among the different geological domains present in the region. Analysis of these samples included evaluation of edaphological parameters (reactivity, electrical conductivity, organic matter content) and the geochemistry of major and trace elements by X-ray fluorescence. The dataset obtained was statistically analyzed for major elements and, in the case of trace elements, was normalized with respect to Al and analyzed using the relative cumulative frequency (RCF) distribution method. Furthermore, the geographic distribution of analytical data was characterized and analyzed using the kriging technique, with a correspondence found between major and trace elements in the different geologic domains of the region as well as with the most important mining areas. The results show an influence of the clay fraction present in the soil, which acts as a repository for trace elements. On the basis of the results, of the possible elements related with clay that could be used for normalization, Al was selected as the most suitable, followed by Fe, Mn, and Ti. Reference values estimated using this methodology were lower than those estimated in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amorós JA, Bravo S, García-Navarro FJ, Pérez-De-Los-Reyes C, Chancón JL, Martínez J Jiménez-Ballesta R (2015) Atlas de suelos vitícolas de Castilla La Mancha. Arte y comunicación Calatrava. Financiado por Globalcaja-UCLM, 318 pg ISBN 978-84-608-1398-9

  • Bailey K, Garson M, Kearns S, Velasco AP (2005) Carbonate volcanism in Calatrava, central Spain: a report on the initial findings. Mineral Mag 69(6):907–915

    Article  CAS  Google Scholar 

  • Bech J, Tume P, Sokolovska M, Reverter F, Sanchez P, Longan L, Bech J, Puente A, Oliver T (2008) Pedogeochemical mapping of Cr, Ni, and Cu in soils of the Barcelona Province (Catalonia, Spain): relationships with soil physico-chemical characteristics. J Geochem Explor 96:106–116

    Article  CAS  Google Scholar 

  • Bech J, Reverter F, Tume P, Sanchez P, Longan L, Bech J, Oliver T (2011) Pedogeochemical mapping Al, Ba, Pb, Ti and V in surface soils of the Barcelona Province (Catalonia, Spain): relationships with soil physicochemical characteristics. J Geochem Explor 109:26–37

    Article  CAS  Google Scholar 

  • Calvo JP, Zarza AMA, Del Cura MAG (1989) Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (central Spain). Palaeogeogr Palaeoclimatol Palaeoecol 70(1):199–214

    Article  Google Scholar 

  • Capote R (1981) La tectónica Hercínica de cabalgamientos en el Sistema Central Español. Cuadernos de Geología Ibérica, 7

  • Chandrasekaran A, Ravisankar R (2015) Spatial distribution of physico-chemical properties and function of heavy metal in soil of Yelagiri hills, Tamilnadu by energy dispersive X-ray florescence spectroscopy (EDXFR) with statistical approach. Spectrochim Acta A Mol Biomol Spectrosc 150:586–601

    Article  CAS  Google Scholar 

  • Conde P, Martín Rubí JA, García R, Jiménez BR (2009) Determination of the neutralization capacity of soils using abrasion pHs, base cations concentrations and mineralogy in Castilla La Mancha (Spain). Fresenius Environ Bull 18(3):280–293

    Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30(1):34–45

    Article  CAS  Google Scholar 

  • Crespo A, Lunar R, Oyarzun R, Doblas M (1995) Unusual case of hot springs-related Co-rich Mn mineralization in central Spain: the Pliocene Calatrava deposits. Econ Geol 90(2):433–437

    Article  CAS  Google Scholar 

  • Dallmeyer RD, Martínez-Garcia E (1990) Pre-Mesozoic geology of Iberia. Springer-Verlag, Berlin 535 pg. ISBN: 978-3-642-83982-5

    Book  Google Scholar 

  • Diez M, Simon M, Dorronsoro C, Garcia I, Martin F (2007) Background arsenic concentrations in southeastern Spanish soils. Sci Total Environ 378(1):5–12

    Article  CAS  Google Scholar 

  • Espejo R (1978) Estudio del perfil edáfico y caracterización de las superficies tipo raña del sector Cañamero-Horcajo de los Montes. PhD Dissertation, ETSI Agrónomos de Madrid, UPM. 469 pp

  • Eur-lex (2006) Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0232:FIN:en:PDF

  • FAO-ISRIC-IUSS (2006) World reference base for soil resources. A framework for international correlation and communication. World soil resources report. FAO, Rome

    Google Scholar 

  • Fay D, Kramers G, Zhang C, McGrath D, Grennan E (2007) Soil geochemical atlas of Ireland. Teagasc. Environmental Research Centre. University of Ireland, Galway

    Google Scholar 

  • Fesharaki O, García-Romero E, Cuevas-González J, López-Martínez N (2007) Clay minerals genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Miner 42(2):187–201

    Article  CAS  Google Scholar 

  • García Sansegundo J, Lorenzo Álvarez S, Ortega E (1987) Mapa Geológico Nacional a escala 1:50.000. Hoja n° 808 (Almadén). IGME, Madrid

  • García-González MT, Aragoneses FJ (1991) Transformaciones mineralógicas en suelos sobre formaciones tipo “raña”. Suelo y Planta 1:735–747

    Google Scholar 

  • Garcia-Ordiales E, Loredo J, Esbrí JM, Lominchar MA, Millan R, Higueras P (2014) Stream bottom sediments as a means to assess metal contamination in the historic mining district of Almadén (Spain). Int J Min Reclam Environ 28(6):357–376

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. Agronomy monograph no.9, ASA-SSSA, Madison, p 383–41

  • Gibbons W, Moreno T (2002) The geology of Spain. The Geological Society, London 649 pp

    Google Scholar 

  • González V (2006) Metodología, formulación y aplicación de un índice de calidad de suelos con fines agrícolas para Castilla-la Mancha. PhD Dissertation, Universidad Autónoma de Madrid

  • Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, Munhá J (1999) The Almadén mercury mining district, Spain. Mineral Deposita 34:539–548

    Article  Google Scholar 

  • Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in the Almadén mining district, Spain. J Geochem Explor 80:95–104

    Article  CAS  Google Scholar 

  • Higueras P, Oyarzun R, Lillo J, Sánchez Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356:112–124

    Article  CAS  Google Scholar 

  • Higueras P, Oyarzun R, Morata D (2013) Intraplate mafic magmatism, degasification, and deposition of mercury: the giant Almadén Hg deposit (Spain) revisited. Ore Geol Rev 51:93–102

    Article  Google Scholar 

  • Hu B, Cui R, Li J, Wei H, Zhao J, Bai F, Son W, Ding X (2013) Occurrence and distribution of heavy metals in surface sediments of the Changhua River estuary and adjacent shelf (Hainan Island). Mar Pollut Bull 76(1):400–405

    Article  CAS  Google Scholar 

  • IGME (2012) Geochemical atlas of Spain (Atlas Geoquímico de España). Instituto Geológico y Minero de España, Madrid In Spanish

    Google Scholar 

  • Jimenez Ballesta R, Cala V, García R, Patino M (1990) Diferenciación textural en suelos de la cuenca de Madrid. Alteración y génesis mineral. Bol Geol Min 101(3):593–599

    Google Scholar 

  • Jimenez-Ballesta R, Conde P, Martín JA, García-Giménez R (2010) Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla-La Mancha, Spain). Cent Eur J Geosci 2(4):441–454

    Google Scholar 

  • Malpas J, Duzgoren-Aydin NS, Aydin A (2001) Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong. Environ Int 26:359–368

    Article  CAS  Google Scholar 

  • Marcinkonis S, Baltrenaite E, Lazauskas S (2011) Extraction and mapping of soil factors using factor analysis and geostatistical analysis on intensively manured heterogeneous soil in Lithuania. Pol J Environ Stud 20(3):701–708

    CAS  Google Scholar 

  • Martín-Crespo T, Gómez-Ortiz D, Martín-Velázquez S, Esbrí JM, de Ignacio-San José C, Sánchez-García MJ, Montoya-Montes I, Martín-González F (2015) Abandoned mine tailings in cultural itineraries: Don Quixote route (Spain). Eng Geol 197:82–93

    Article  Google Scholar 

  • Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): the old metallurgical precinct (1794 to 1861 AD) and surrounding areas. J Geochem Explor 109:70–77

    Article  CAS  Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (1999) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000

    Article  Google Scholar 

  • Mielke JE (1979) Composition of the earth’s crust and distribution of the elements. In: Siegel FR (ed) Review of research on modern problems in geochemistry. UNESCO Report, Paris, pp 13–37

    Google Scholar 

  • Mihailovic A, Budinski-Peckovic Lj, Popov S, Ninkov J, Vasin J, Ralevic NM, Vucunic Vasic M (2015) Spartial distribution of metal in urban soil of Nivo Sad, Serbia: GIS based approach. J Geochem Explor 150:104–114

  • Mrvi V, KostiKravljanac L, Cakmak D, Sikiri B, Brebanovi B, Perovi V, Nikoloski M (2011) Pedogeochemical mapping and background limit of trace elements in soils of Branicevo Province (Serbia). J Geochem Explor 109(1):18–25

    Article  CAS  Google Scholar 

  • Palero FJ, Both RA, Arribas A, Boyce AJ, Mangas J, Martin-Izard A (2003) Geology and metallogenic evolution of the polymetallic deposits of the Alcudia Valley mineral field, Eastern Sierra Morena, Spain. Econ Geol 98(3):577–605

    CAS  Google Scholar 

  • Palero FJ, Martin-Izard A, Prieto MZ, Mansilla L (2015) Geological context and plumbotectonic evolution of the giant Almadén mercury deposit. Ore Geol Rev 64(1):71–88

    Article  Google Scholar 

  • Pillet F (2007) Geografía de Castilla-La Mancha. Biblioteca Añil. Ed. Almud. Castilla – La Mancha

  • Porta J, López-Acevedo M, Rodríguez M (1986) Técnicas y experimentos en edafología. C.O.I.A.C, Barcelona

    Google Scholar 

  • Rawlins BG, McGrath SP, Scheib AJ, Breward N, Cave M, Lister TR, Ingham M, Gowing C, Carter S (2012) The advanced soil geochemical atlas of England and Wales. British Geological Survey, Keyworth www.bgs.ac.uk/gbase/advsoilatlasEW.html

    Google Scholar 

  • Reimann C, Siewers U, Tarvainen T, Bityukova L, Eriksson A, Gilucis V, Gregorauskine V, Lukashev VK, Matinian NN, Pasieczna A (2003) Agricultural soils in northern Europe: a geochemical atlas. Geologisches Jahrbuch. Sonderhefte, Reinhe. ISBN 3-510-95906-X

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  CAS  Google Scholar 

  • Richards LA (1954) Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Sci 66:105–110

    Article  Google Scholar 

  • Roca N, Pazos MS, Bech J (2008) The relationship between WRB soil units and heavy metals content in soils of Catamarca (Argentina). J Geochem Explor 96(2–3):77–85

  • Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manag 90(2):1106–1116

    Article  CAS  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, Lima A (2005) Foregs – Geochemical atlas of Europe. Part 1. Background information, methodology, and maps

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. USGS. Prof. Pap. 1270. U.S. Gov. Print. Office, Washington, D.C

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. NRCS. United States Department of Agriculture, Washington DC

    Google Scholar 

  • Song Y, Choi MS, Lee JY, Jang DJ (2014) Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci Total Environ 482:80–91

    Article  CAS  Google Scholar 

  • Suh JY, Birch GF (2005) Use of grain-size and elemental normalization in the interpretation of trace metal concentrations in soils of the reclaimed area adjoining Port Jackson, Sydney, Australia. Water Air Soil Pollut 160(1):357–371

    Article  CAS  Google Scholar 

  • Tack FMG, Verloo MG, Vanmechelen L, Van Ranst E (1997) Baseline concentrations levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Sci Total Environ 201(2):113–123

    Article  CAS  Google Scholar 

  • Torres T, Zapata JL (1986) Paleotopografía y distribución de paleocorrientes de abanicos aluviales de la Depresión Intermedia (Cuenca-Guadalajara). Acta Geológica Hispánica 21(1):55–61

    Google Scholar 

  • Tume P, Bech J, Reverter F, Bech J, Longan L, Tume L, Sepúlveda B (2011) Concentration and distribution of twelve metal in Central Catalonia surface soils. J Geochem Explor 109(1):92–103

    Article  CAS  Google Scholar 

  • Vera JA (2004) Geología de España. Sociedad Geológica de España and Instituto Geológico y Minero de España. 884 pp.

  • Vicente MA, Molina E, Espejo R (1991) Clays in paleoweathering processes: study of a typical weathering profile in the Hercynian basement in the Montes de Toledo (Spain). Clay Miner 26:81–90

    Article  CAS  Google Scholar 

  • Vilas L, de San Jose MA, Garcia-Hidalgo JF, Herranz P, Peláez JR, Perejón A, Gutiérrez Marco JC, Pieren AP, Diez Balda MA et al (1990) Autochthonous sequences. In: Dallmeyer RD, Martínez-Garcia E (eds) Pre-Mesozoic geology of Iberia. Springer-Verlag, Berlin

    Google Scholar 

  • Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2007) Defining the geochemical baseline: a case of Hong Kong soils. Environ Geol 52(5):843–851

    Article  CAS  Google Scholar 

  • Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157(5):1533–1543

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Castilla-La Mancha regional government (PPII10-0063-8230) and by the Spanish Ministry of Science and Innovation (Grant CGL2015-67644-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Bravo.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, S., García-Ordiales, E., García-Navarro, F.J. et al. Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain): finding criteria for baselines and delimiting regional anomalies. Environ Sci Pollut Res 26, 3100–3114 (2019). https://doi.org/10.1007/s11356-017-0010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0010-6

Keywords

Navigation