Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3100–3114 | Cite as

Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain): finding criteria for baselines and delimiting regional anomalies

  • Sandra BravoEmail author
  • Efrén García-Ordiales
  • Francisco Jesús García-Navarro
  • José Ángel Amorós
  • Caridad Pérez-de-los-Reyes
  • Raimundo Jiménez-Ballesta
  • José María Esbrí
  • Eva María García-Noguero
  • Pablo Higueras
Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation


Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality. With this objective, 200 soil samples were taken from agricultural areas distributed among the different geological domains present in the region. Analysis of these samples included evaluation of edaphological parameters (reactivity, electrical conductivity, organic matter content) and the geochemistry of major and trace elements by X-ray fluorescence. The dataset obtained was statistically analyzed for major elements and, in the case of trace elements, was normalized with respect to Al and analyzed using the relative cumulative frequency (RCF) distribution method. Furthermore, the geographic distribution of analytical data was characterized and analyzed using the kriging technique, with a correspondence found between major and trace elements in the different geologic domains of the region as well as with the most important mining areas. The results show an influence of the clay fraction present in the soil, which acts as a repository for trace elements. On the basis of the results, of the possible elements related with clay that could be used for normalization, Al was selected as the most suitable, followed by Fe, Mn, and Ti. Reference values estimated using this methodology were lower than those estimated in previous studies.


Geochemistry Agricultural soils Pedogeochemical maps Physico-chemical properties 



This study was funded by the Castilla-La Mancha regional government (PPII10-0063-8230) and by the Spanish Ministry of Science and Innovation (Grant CGL2015-67644-R).


  1. Amorós JA, Bravo S, García-Navarro FJ, Pérez-De-Los-Reyes C, Chancón JL, Martínez J Jiménez-Ballesta R (2015) Atlas de suelos vitícolas de Castilla La Mancha. Arte y comunicación Calatrava. Financiado por Globalcaja-UCLM, 318 pg ISBN 978-84-608-1398-9Google Scholar
  2. Bailey K, Garson M, Kearns S, Velasco AP (2005) Carbonate volcanism in Calatrava, central Spain: a report on the initial findings. Mineral Mag 69(6):907–915Google Scholar
  3. Bech J, Tume P, Sokolovska M, Reverter F, Sanchez P, Longan L, Bech J, Puente A, Oliver T (2008) Pedogeochemical mapping of Cr, Ni, and Cu in soils of the Barcelona Province (Catalonia, Spain): relationships with soil physico-chemical characteristics. J Geochem Explor 96:106–116Google Scholar
  4. Bech J, Reverter F, Tume P, Sanchez P, Longan L, Bech J, Oliver T (2011) Pedogeochemical mapping Al, Ba, Pb, Ti and V in surface soils of the Barcelona Province (Catalonia, Spain): relationships with soil physicochemical characteristics. J Geochem Explor 109:26–37Google Scholar
  5. Calvo JP, Zarza AMA, Del Cura MAG (1989) Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (central Spain). Palaeogeogr Palaeoclimatol Palaeoecol 70(1):199–214Google Scholar
  6. Capote R (1981) La tectónica Hercínica de cabalgamientos en el Sistema Central Español. Cuadernos de Geología Ibérica, 7Google Scholar
  7. Chandrasekaran A, Ravisankar R (2015) Spatial distribution of physico-chemical properties and function of heavy metal in soil of Yelagiri hills, Tamilnadu by energy dispersive X-ray florescence spectroscopy (EDXFR) with statistical approach. Spectrochim Acta A Mol Biomol Spectrosc 150:586–601Google Scholar
  8. Conde P, Martín Rubí JA, García R, Jiménez BR (2009) Determination of the neutralization capacity of soils using abrasion pHs, base cations concentrations and mineralogy in Castilla La Mancha (Spain). Fresenius Environ Bull 18(3):280–293Google Scholar
  9. Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30(1):34–45Google Scholar
  10. Crespo A, Lunar R, Oyarzun R, Doblas M (1995) Unusual case of hot springs-related Co-rich Mn mineralization in central Spain: the Pliocene Calatrava deposits. Econ Geol 90(2):433–437Google Scholar
  11. Dallmeyer RD, Martínez-Garcia E (1990) Pre-Mesozoic geology of Iberia. Springer-Verlag, Berlin 535 pg. ISBN: 978-3-642-83982-5Google Scholar
  12. Diez M, Simon M, Dorronsoro C, Garcia I, Martin F (2007) Background arsenic concentrations in southeastern Spanish soils. Sci Total Environ 378(1):5–12Google Scholar
  13. Espejo R (1978) Estudio del perfil edáfico y caracterización de las superficies tipo raña del sector Cañamero-Horcajo de los Montes. PhD Dissertation, ETSI Agrónomos de Madrid, UPM. 469 ppGoogle Scholar
  14. Eur-lex (2006) Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC
  15. FAO-ISRIC-IUSS (2006) World reference base for soil resources. A framework for international correlation and communication. World soil resources report. FAO, RomeGoogle Scholar
  16. Fay D, Kramers G, Zhang C, McGrath D, Grennan E (2007) Soil geochemical atlas of Ireland. Teagasc. Environmental Research Centre. University of Ireland, GalwayGoogle Scholar
  17. Fesharaki O, García-Romero E, Cuevas-González J, López-Martínez N (2007) Clay minerals genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Miner 42(2):187–201Google Scholar
  18. García Sansegundo J, Lorenzo Álvarez S, Ortega E (1987) Mapa Geológico Nacional a escala 1:50.000. Hoja n° 808 (Almadén). IGME, MadridGoogle Scholar
  19. García-González MT, Aragoneses FJ (1991) Transformaciones mineralógicas en suelos sobre formaciones tipo “raña”. Suelo y Planta 1:735–747Google Scholar
  20. Garcia-Ordiales E, Loredo J, Esbrí JM, Lominchar MA, Millan R, Higueras P (2014) Stream bottom sediments as a means to assess metal contamination in the historic mining district of Almadén (Spain). Int J Min Reclam Environ 28(6):357–376Google Scholar
  21. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. Agronomy monograph no.9, ASA-SSSA, Madison, p 383–41Google Scholar
  22. Gibbons W, Moreno T (2002) The geology of Spain. The Geological Society, London 649 ppGoogle Scholar
  23. González V (2006) Metodología, formulación y aplicación de un índice de calidad de suelos con fines agrícolas para Castilla-la Mancha. PhD Dissertation, Universidad Autónoma de MadridGoogle Scholar
  24. Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, Munhá J (1999) The Almadén mercury mining district, Spain. Mineral Deposita 34:539–548Google Scholar
  25. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in the Almadén mining district, Spain. J Geochem Explor 80:95–104Google Scholar
  26. Higueras P, Oyarzun R, Lillo J, Sánchez Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356:112–124Google Scholar
  27. Higueras P, Oyarzun R, Morata D (2013) Intraplate mafic magmatism, degasification, and deposition of mercury: the giant Almadén Hg deposit (Spain) revisited. Ore Geol Rev 51:93–102Google Scholar
  28. Hu B, Cui R, Li J, Wei H, Zhao J, Bai F, Son W, Ding X (2013) Occurrence and distribution of heavy metals in surface sediments of the Changhua River estuary and adjacent shelf (Hainan Island). Mar Pollut Bull 76(1):400–405Google Scholar
  29. IGME (2012) Geochemical atlas of Spain (Atlas Geoquímico de España). Instituto Geológico y Minero de España, Madrid In SpanishGoogle Scholar
  30. Jimenez Ballesta R, Cala V, García R, Patino M (1990) Diferenciación textural en suelos de la cuenca de Madrid. Alteración y génesis mineral. Bol Geol Min 101(3):593–599Google Scholar
  31. Jimenez-Ballesta R, Conde P, Martín JA, García-Giménez R (2010) Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla-La Mancha, Spain). Cent Eur J Geosci 2(4):441–454Google Scholar
  32. Malpas J, Duzgoren-Aydin NS, Aydin A (2001) Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong. Environ Int 26:359–368Google Scholar
  33. Marcinkonis S, Baltrenaite E, Lazauskas S (2011) Extraction and mapping of soil factors using factor analysis and geostatistical analysis on intensively manured heterogeneous soil in Lithuania. Pol J Environ Stud 20(3):701–708Google Scholar
  34. Martín-Crespo T, Gómez-Ortiz D, Martín-Velázquez S, Esbrí JM, de Ignacio-San José C, Sánchez-García MJ, Montoya-Montes I, Martín-González F (2015) Abandoned mine tailings in cultural itineraries: Don Quixote route (Spain). Eng Geol 197:82–93Google Scholar
  35. Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): the old metallurgical precinct (1794 to 1861 AD) and surrounding areas. J Geochem Explor 109:70–77Google Scholar
  36. Matschullat J, Ottenstein R, Reimann C (1999) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000Google Scholar
  37. Mielke JE (1979) Composition of the earth’s crust and distribution of the elements. In: Siegel FR (ed) Review of research on modern problems in geochemistry. UNESCO Report, Paris, pp 13–37Google Scholar
  38. Mihailovic A, Budinski-Peckovic Lj, Popov S, Ninkov J, Vasin J, Ralevic NM, Vucunic Vasic M (2015) Spartial distribution of metal in urban soil of Nivo Sad, Serbia: GIS based approach. J Geochem Explor 150:104–114Google Scholar
  39. Mrvi V, KostiKravljanac L, Cakmak D, Sikiri B, Brebanovi B, Perovi V, Nikoloski M (2011) Pedogeochemical mapping and background limit of trace elements in soils of Branicevo Province (Serbia). J Geochem Explor 109(1):18–25Google Scholar
  40. Palero FJ, Both RA, Arribas A, Boyce AJ, Mangas J, Martin-Izard A (2003) Geology and metallogenic evolution of the polymetallic deposits of the Alcudia Valley mineral field, Eastern Sierra Morena, Spain. Econ Geol 98(3):577–605Google Scholar
  41. Palero FJ, Martin-Izard A, Prieto MZ, Mansilla L (2015) Geological context and plumbotectonic evolution of the giant Almadén mercury deposit. Ore Geol Rev 64(1):71–88Google Scholar
  42. Pillet F (2007) Geografía de Castilla-La Mancha. Biblioteca Añil. Ed. Almud. Castilla – La ManchaGoogle Scholar
  43. Porta J, López-Acevedo M, Rodríguez M (1986) Técnicas y experimentos en edafología. C.O.I.A.C, BarcelonaGoogle Scholar
  44. Rawlins BG, McGrath SP, Scheib AJ, Breward N, Cave M, Lister TR, Ingham M, Gowing C, Carter S (2012) The advanced soil geochemical atlas of England and Wales. British Geological Survey, Keyworth Google Scholar
  45. Reimann C, Siewers U, Tarvainen T, Bityukova L, Eriksson A, Gilucis V, Gregorauskine V, Lukashev VK, Matinian NN, Pasieczna A (2003) Agricultural soils in northern Europe: a geochemical atlas. Geologisches Jahrbuch. Sonderhefte, Reinhe. ISBN 3-510-95906-XGoogle Scholar
  46. Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16Google Scholar
  47. Richards LA (1954) Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Sci 66:105–110Google Scholar
  48. Roca N, Pazos MS, Bech J (2008) The relationship between WRB soil units and heavy metals content in soils of Catamarca (Argentina). J Geochem Explor 96(2–3):77–85Google Scholar
  49. Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manag 90(2):1106–1116Google Scholar
  50. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, Lima A (2005) Foregs – Geochemical atlas of Europe. Part 1. Background information, methodology, and mapsGoogle Scholar
  51. Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. USGS. Prof. Pap. 1270. U.S. Gov. Print. Office, Washington, D.CGoogle Scholar
  52. Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. NRCS. United States Department of Agriculture, Washington DCGoogle Scholar
  53. Song Y, Choi MS, Lee JY, Jang DJ (2014) Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci Total Environ 482:80–91Google Scholar
  54. Suh JY, Birch GF (2005) Use of grain-size and elemental normalization in the interpretation of trace metal concentrations in soils of the reclaimed area adjoining Port Jackson, Sydney, Australia. Water Air Soil Pollut 160(1):357–371Google Scholar
  55. Tack FMG, Verloo MG, Vanmechelen L, Van Ranst E (1997) Baseline concentrations levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Sci Total Environ 201(2):113–123Google Scholar
  56. Torres T, Zapata JL (1986) Paleotopografía y distribución de paleocorrientes de abanicos aluviales de la Depresión Intermedia (Cuenca-Guadalajara). Acta Geológica Hispánica 21(1):55–61Google Scholar
  57. Tume P, Bech J, Reverter F, Bech J, Longan L, Tume L, Sepúlveda B (2011) Concentration and distribution of twelve metal in Central Catalonia surface soils. J Geochem Explor 109(1):92–103Google Scholar
  58. Vera JA (2004) Geología de España. Sociedad Geológica de España and Instituto Geológico y Minero de España. 884 pp.Google Scholar
  59. Vicente MA, Molina E, Espejo R (1991) Clays in paleoweathering processes: study of a typical weathering profile in the Hercynian basement in the Montes de Toledo (Spain). Clay Miner 26:81–90Google Scholar
  60. Vilas L, de San Jose MA, Garcia-Hidalgo JF, Herranz P, Peláez JR, Perejón A, Gutiérrez Marco JC, Pieren AP, Diez Balda MA et al (1990) Autochthonous sequences. In: Dallmeyer RD, Martínez-Garcia E (eds) Pre-Mesozoic geology of Iberia. Springer-Verlag, BerlinGoogle Scholar
  61. Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2007) Defining the geochemical baseline: a case of Hong Kong soils. Environ Geol 52(5):843–851Google Scholar
  62. Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157(5):1533–1543Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sandra Bravo
    • 1
    • 2
    Email author
  • Efrén García-Ordiales
    • 3
  • Francisco Jesús García-Navarro
    • 1
    • 2
  • José Ángel Amorós
    • 1
    • 2
  • Caridad Pérez-de-los-Reyes
    • 1
    • 2
  • Raimundo Jiménez-Ballesta
    • 4
  • José María Esbrí
    • 2
    • 5
  • Eva María García-Noguero
    • 2
    • 5
  • Pablo Higueras
    • 2
    • 5
  1. 1.Escuela Técnica Superior de Ingenieros Agrónomos de Ciudad RealUniversidad de Castilla-La ManchaCiudad RealSpain
  2. 2.Instituto Geología AplicadaUniversidad de Castilla-La ManchaCiudad RealSpain
  3. 3.ISYMA Research Group, Mining, Energy and Materials Engineering SchoolUniversity of OviedoOviedoSpain
  4. 4.Departamento de Geología y Geoquímica, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  5. 5.Escuela de Ingeniería Minera e Industrial de AlmadénCiudad RealSpain

Personalised recommendations