Skip to main content

Advertisement

Log in

Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work considered the environmental impact of artisanal mining gold activity in the Migori–Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 μg kg−1), sediment (430 μg kg−1) and tailings (8,900 μg kg−1), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori–Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial enviroments: Biogeochemistry, bioavailability, and risks of metals. Springer, New York

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, Netherlands

    Book  Google Scholar 

  • Appleton JD, Weeks JM, Calvez JPS, Beinhoff C (2006) Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Sci Total Environ 354:198–211

    Article  CAS  Google Scholar 

  • Argyraki A, Kelepertzis E (2014) Urban soil geochemistry in Athens, Greece: the importance of local geology in controlling the distribution of potentially harmful trace elements. Sci Total Environ 482:366–377

    Article  Google Scholar 

  • Boamponsem LK, Adam JI, Dampare SBE, Owusu-Ansah E, Addae G (2010) Heavy metals level in streams of Tarkwa gold mining area of Ghana. J Chem Pharm Res 2010(2):504–527

    Google Scholar 

  • Bueno P, Bellido E, Rubí J, Ballesta R (2009) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environ Geol 56:815–824

    Article  CAS  Google Scholar 

  • Carbonell G, Imperial MR, Torrijos M, Delgado M, Rodriguez JA (2011) Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere 85:1614–1623

    Article  CAS  Google Scholar 

  • Cooper CM, Gillespie WB Jr (2001) Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed. Environ Pollut 111:67–74

    Article  CAS  Google Scholar 

  • Counter SA, Buchanan LH, Ortega F, Laurell G (2002) Elevated blood mercury and neuro-ontological observation in children of the Ecuadorian gold mines. J Toxicol Env Heal A 65:149–163

    Article  CAS  Google Scholar 

  • Cuny D, Davranche L, Thomas P, Kempa M, van Haluwyn C (2004) Spatial and temporal variations of trace element contents in Xanthoria parietina Thalli collected in a highly industrialized area in Northern France as an element for a future epidemiological study. J Atmos Chem 49:391–401

    Article  CAS  Google Scholar 

  • Di Giulio RT, Ryan EA (1987) Mercury in soils, and clams from a North Carolina peatland. Water Air Soil Poll 33:205–219

    Article  Google Scholar 

  • Dietz R, Riget F, Born EW (2000) An assessment of selenium to mercury in Greenland marine animals. Sci Total Environ 245:15–24

    Article  CAS  Google Scholar 

  • Do Valle CM, Santana GP, Augusti R, Egreja Filho FB, Windmoller CC (2005) Speciation and quantification of mercury in oxisol, ultisol, and spodosol from Amazon (Manaus, Brazil). Chemosphere 58:779–792

    Article  CAS  Google Scholar 

  • Donkor AK, Nartey VK, Bonzongo JC, Adotey DK (2006) Artisanal mining of gold with mercury in Ghana. West Africa J Appl Ecol 9:3–18

    Google Scholar 

  • Drasch G, Böse-O’Reilly S, Beinhoff C, Roider G, Maydl S (2001) The Mt. Diwata study on the Philippines 1999—assessing mercury intoxication of the population by small scale gold mining. Sci Total Environ 267:151–168

    Article  CAS  Google Scholar 

  • Feng X, Dai Q, Qiu G, Li G, He L, Wang D (2006) Gold mining related mercury contamination in Tongguan, Shaanxi Province, PR China. Appl Geochem 21:1955–1968

    Article  CAS  Google Scholar 

  • Fritsch E, Herbillon AJ, do Nascimento NR, Grimaldi M, Melfi AJ (2006) From Plinthic Acrisols to Plinthosols and Gleysols: iron and groundwater dynamics in the tertiary sediments of the upper Amazon basin. Eur J Soil Sci 58:989–1006

    Article  Google Scholar 

  • Gil C, Ramos-Miras J, Roca-Pérez L, Boluda R (2010) Determination and assessment of mercury content in calcareous soils. Chemosphere 78:409–415

    Article  CAS  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, USA

    Google Scholar 

  • Göthberg A, Greger M (2006) Formation of methyl mercury in an aquatic macrophyte. Chemosphere 65:2096–2105

    Article  Google Scholar 

  • Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali-plant (Grenoble, France). Ecol Indic 13:178–183

    Article  CAS  Google Scholar 

  • Guedron S, Grangeon S, Lanson B, Grimaldi M (2009) Mercury speciation in Tropical soil association; consequence of gold mining on mercury distribution in French Guiana. Geoderma 153:331–346

    Article  CAS  Google Scholar 

  • Guo X, Fu B, Ma K, Chen L, Wang J (2001) Spatio-temporal variability of soil nutrients in the Zunhua Plain, Northern China. Phys Geogr 22:343

    Google Scholar 

  • Hilson G (2002) The environmental impact of small scale gold mining in Ghana: identifying problems and possible solutions. Geog J 168:57–72

    Article  Google Scholar 

  • Ikingura JR, Akagi H (2002) Lichens asa good bioindicator of air pollutionby mercury in small-scale mining area, Tanzania. Bull Environ Contam Toxicol 68:699–704

    Article  CAS  Google Scholar 

  • Ikingura JR, Mutakyahwa MKD, Kahatano JMJ (1997) Mercury and mining in Africa with special reference to Tanzania. Water Air Soil Poll 97(3–4):223–232

    CAS  Google Scholar 

  • Jobson JD (1992) Applied multivariate data analysis. Springer, Heidelberg

    Book  Google Scholar 

  • Lacerda LD, Salomons W (1998) Mercury from gold and silver. A chemical time bomb? Springer, Berlin

    Book  Google Scholar 

  • Leigh DS (1994) Mercury contamination and floodplain sedimentation from former gold mines in North Georgia. J Am Water Resour Assoc 30:739–748

    Article  CAS  Google Scholar 

  • Li J, Wu Y (1991) Historical changes of soil metal background values in select areas of China. Water Air Soil Poll 57:755–761

    Article  Google Scholar 

  • Lin CJ, Pehkonen SO (1999) The chemistry of atmospheric mercury: a review. Atmos Environ 33:2067–2079

    Article  CAS  Google Scholar 

  • Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, Central Italy). Chemosphere 41:1333–1336

    Article  CAS  Google Scholar 

  • Loppi S, Pirintsos SA, Dominicis VD (1999) Soil contribution to the elemental composition of epiphytic lichens (Tuscany, Central Italy). Environ Monit Assess 58:121–131

    Article  CAS  Google Scholar 

  • Lv J, Liu Y, Zhang Z, Dai J (2013) Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. J Hazard Mater 261:387–397

    Article  CAS  Google Scholar 

  • Mae Sexauer G (2003) Are mercury emissions from geologic sources significant? A status report. Sci Total Environ 304:153–167

    Article  Google Scholar 

  • Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian amazon. Environ Res 77:73–78

    Article  CAS  Google Scholar 

  • Mason R, Pirrone N (2008) Mercury fate and transport in the global atmosphere: measurements, models and policy implications. UNEP, Rome

    Google Scholar 

  • Mileusnić M, Mapani BS, Kamona AF, Ružičić S, Mapaure I, Chimwamurombe PM (2014) Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. J Geochem Explor. doi:10.1016/j.gexplo.2014.01.009

    Google Scholar 

  • Miller JR, Lechler PJ, Bridge G (2003) Mercury contamination of alluvial sediments within the Essequibo and Mazaruni River Basins, Guyana. Water Air Soil Poll 148:139–166

    Article  CAS  Google Scholar 

  • Nanos N, Rodríguez Martín JA (2012) Multiscale analysis of heavy metal contents in soils: spatial variability in the Duero river basin (Spain). Geoderma 189–190:554–562

    Article  Google Scholar 

  • Nourzadeh M, Mahdian MH, Malakouti MJ, Khavazi K (2012) Investigation and prediction spatial variability in chemical properties of agricultural soil using geostatistics. Arch Agron Soil Sci 58:461–475

    Article  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Odumo OB, Mustapha AO, Patel JP, Angeyo HK (2011) Multielemental analysis of Migori (Southwestern Kenya) artisanal gold mine ores and sediments by EDX-ray flourescence technique: implications of occupational exposure and environmental impact. Bull Environ Contam Toxicol 86:484–489

    Article  CAS  Google Scholar 

  • Ogola JS, Mitullah WV, Omulo MA (2002) Impact of gold mining on the environment and human health: a case study in the Migori gold belt, Kenya. Environ Geochem Hlth 24:141–158

    Article  CAS  Google Scholar 

  • Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Mon Assess 71:13–50

    Article  CAS  Google Scholar 

  • Pfeiffer WC, Lacerda LD, Salomons W, Malm O (1993) Environmental fate of mercury from gold mining in the Brazilian Amazon. Environ Rev 1:26–37

    Article  CAS  Google Scholar 

  • Qiu G, Feng X, Wang S, Shang L (2005) Mercury and methylmercury in riparian soil, sediments, mine waste calcines and moss from abandoned Hg mines in East Gianzhou province, Southwestern China. Appl Geochem 20:627–638

    Article  CAS  Google Scholar 

  • Rodríguez Martín J, Vázquez de la Cueva A, Grau Corbí J, López Arias M (2007) Factors controlling the spatial variability of copper in topsoils of the Northeastern Region of the Iberian Peninsula, Spain. Water Air Soil Poll 186:311–321

    Article  Google Scholar 

  • Rodríguez Martín J, Carbonell G, López Arias M, Grau Corbí J (2009) Mercury content in topsoils, and geostatistical methods to identify anthropogenic input in the Ebro basin (Spain). Span J Agric Res 7:107–118

    Article  Google Scholar 

  • Rodríguez Martín JA, Nanos N, Miranda J, Carbonell G, Gil L (2013) Volcanic mercury in Pinus canariensis. Naturwissenschaften 100:739–747

    Article  Google Scholar 

  • Schroeder WH, Munthe J (1988) Atmospheric mercury—an overview. Atmos Environ 29:809–822

    Google Scholar 

  • Seid-Mohammadi A, Roshanaei G, Asgari G (2014) Heavy metals concentration in vegetables irrigated with contaminated and fresh water and estimation of their daily intakes in suburb areas of Hamadan, Iran. J Res Health Sci 14(1):69–74

    Google Scholar 

  • Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471

    Article  CAS  Google Scholar 

  • Tomiyasu T, Kono Y, Kodamatani H, Hidayati N, Rahajoe JS (2013) The distribution of mercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environ Res 125:12–19

    Article  CAS  Google Scholar 

  • van Straaten P (2000) Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe. Sci Total Environ 259:105–113

    Article  Google Scholar 

  • Veiga MM, Nunes D, Klein B, Shandro JA, Velasquez PC (2009) Mill leaching: a viable substitute for mercury amalgamation in the artisanal gold mining sector? J Clean Prod 17:1373–1381

    Article  CAS  Google Scholar 

  • Wang S, Zhang L, Li G, Wu Y, Hao J, Pirrone N, Sprovieri F, Ancora M (2010) Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 10:1183–1192

    Article  CAS  Google Scholar 

  • Wolterbeek HT, Bode P, Verburg TG (1996) Assessing the quality of biomonitoring via signal-to-noise ratio analysis. Sci Total Environ 180:107–116

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q, Adriano DC (1991) Interim environmental guidelines for cadmium and mercury in soils of China. Water Air Soil Poll 57–58:733–743

    Article  Google Scholar 

  • Yang X, Wang L (2008) Spatial analysis and hazard assessment of mercury in soil around the coal-fired power plant: a case study from the city of Baoji, China. Environ Geol 53:1381–1388

    Article  CAS  Google Scholar 

  • Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Inter 33:108–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the financial assistance provided by The National Council for Science and Innovation (NACOSTI) for funding the fieldwork. We are also grateful to the Spanish Ministry (projects CGL2009-14686-C02-02 and CTM2010-19779-C02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Rodríguez Martín.

Additional information

Responsible editor: Stuart Simpson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 66 kb)

Table S2

(DOC 52 kb)

Table S3

(DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odumo, B.O., Carbonell, G., Angeyo, H.K. et al. Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environ Sci Pollut Res 21, 12426–12435 (2014). https://doi.org/10.1007/s11356-014-3190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3190-3

Keywords

Navigation