Skip to main content

Advertisement

Log in

Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge

  • Effective management of sewage sludge
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon–Weaver diversity (H′) and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ Rev 18:255–278. doi:10.1139/A10-011

    Article  CAS  Google Scholar 

  • Amann R, Binder B (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  • APHA (1998) APHA standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

  • Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568. doi:10.1016/j.watres.2006.12.036

    Article  CAS  Google Scholar 

  • Berger S, Welte C, Deppenmeier U (2012) Acetate activation in Methanosaeta thermophila: characterization of the key enzymes pyrophosphatase and acetyl-CoA synthetase. Archaea 2012:315153. doi:10.1155/2012/315153

    Article  Google Scholar 

  • Bougrier C, Carrère H, Delgenès JP (2005) Solubilisation of waste-activated sludge by ultrasonic treatment. Chem Eng J 106:163–169. doi:10.1016/j.cej.2004.11.013

    Article  CAS  Google Scholar 

  • Bougrier C, Albasi C, Delgenès JP, Carrère H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process 45:711–718. doi:10.1016/j.cep.2006.02.005

    Article  CAS  Google Scholar 

  • Braguglia CM, Gagliano MC, Rossetti S (2012) High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresour Technol 110:43–49. doi:10.1016/j.biortech.2012.01.074

    Article  CAS  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650. doi:10.1016/j.wasman.2012.04.016

    Article  CAS  Google Scholar 

  • Carrère H, Dumas C, Battimelli A et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15. doi:10.1016/j.jhazmat.2010.06.129

    Article  Google Scholar 

  • Coelho NMG, Droste RL, Kennedy KJ (2011) Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Res 45:2822–2834. doi:10.1016/j.watres.2011.02.032

    Article  CAS  Google Scholar 

  • Etchebehere C, Pavan ME, Zorzópulos J et al (1998) Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. Int J Syst Bacteriol 48(Pt 4):1297–1304

    Article  CAS  Google Scholar 

  • Ge H, Jensen PD, Batstone DJ (2010) Pre-treatment mechanisms during thermophilic–mesophilic temperature phased anaerobic digestion of primary sludge. Water Res 44:123–130. doi:10.1016/j.watres.2009.09.005

    Article  CAS  Google Scholar 

  • Ge H, Batstone DJ, Jensen PD (2012) Effect of temperature increase from 55 °C to 70 °C on anaerobic digestion: methanogenic activity and microbial community. In: Bianca Di Salvo, AWA Biosolids and Source Management National Conference: Program and Abstracts. AWA Biosolids and Source Management National Conference, Gold Coast, Qld., Australia (51–51). 18–20 June 2012. http://espace.library.uq.edu.au/view/UQ:278537

  • Gianico A, Braguglia CM, Cesarini R, Mininni G (2013) Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load. Bioresour Technol 143:96–103. doi:10.1016/j.biortech.2013.05.069

    Article  CAS  Google Scholar 

  • Gianico A, Braguglia CM, Gallipoli A, Mininni G (2014) Sonication of waste activated sludge before two-stage mesophilic/thermophilic anaerobic semi-continuous process: performances and energy balance. Environ Sci Pollut Res (in press)

  • Hao L-P, Lü F, He P-J et al (2011) Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations. Environ Sci Technol 45:508–513. doi:10.1021/es102228v

    Article  CAS  Google Scholar 

  • Heip C (1974) A new index measuring evenness. J Mar Biol Assoc UK 54:555–557

    Article  Google Scholar 

  • Ho DP, Jensen PD, Batstone DJ (2013) Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge. Appl Environ Microbiol 79:6491–6500. doi:10.1128/AEM.01730-13

    Article  CAS  Google Scholar 

  • Hori T, Haruta S, Ueno Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630. doi:10.1128/AEM.72.2.1623

    Article  CAS  Google Scholar 

  • Ike M, Inoue D, Miyano T et al (2010) Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresour Technol 101:3952–3957. doi:10.1016/j.biortech.2010.01.028

    Article  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. doi:10.1128/AEM.00489-06

    Article  CAS  Google Scholar 

  • Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76:1842–1850. doi:10.1128/AEM.02397-09

    Article  CAS  Google Scholar 

  • Lauwers J, Appels L, Thompson IP et al (2013) Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. Prog Energy Combust Sci 39:383–402. doi:10.1016/j.pecs.2013.03.003

    Article  Google Scholar 

  • Lee M, Hidaka T, Tsuno H (2009) Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage. J Biosci Bioeng 108:408–413. doi:10.1016/j.jbiosc.2009.05.011

    Article  CAS  Google Scholar 

  • Loy A, Maixner F, Wagner M, Horn M (2007) probeBase–an online resource for rRNA-targeted oligonucleotide probes: new features. Nucleic Acids Res 35:D800–D804. doi:10.1093/nar/gkl856

  • Lü F, Bize A, Guillot A et al (2014) Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME J 8:88–102. doi:10.1038/ismej.2013.120

    Article  Google Scholar 

  • Majeed T, Tabassum R, Orts WJ, Lee CC (2013) Expression and characterization of coprothermobacter proteolyticus alkaline serine protease. Sci World J 2013:1–6. doi:10.1155/2013/396156

    Article  Google Scholar 

  • Merlino G, Rizzi A, Schievano A et al (2013) Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste. Water Res 47:1983–1995. doi:10.1016/j.watres.2013.01.007

    Article  CAS  Google Scholar 

  • Montero B, García-Morales JL, Sales D, Solera R (2009) Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: use of fluorescent in situ hybridization. Waste Manag 29:1144–1151. doi:10.1016/j.wasman.2008.08.010

    Article  CAS  Google Scholar 

  • Morgan R, Pihl T, Nölling J, Reeve JN (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH. J Bacteriol 179:889–898

    CAS  Google Scholar 

  • Nakamura K, Terada T, Sekiguchi Y et al (2006) Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl Environ Microbiol 72:6907–6913. doi:10.1128/AEM.01499-06

    Article  CAS  Google Scholar 

  • Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102:3730–3739. doi:10.1016/j.biortech.2010.11.119

    Article  CAS  Google Scholar 

  • O’Flaherty V, Collins G, Mahony T (2006) The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev Environ Sci Biotechnol 5:39–55. doi:10.1007/s11157-005-5478-8

  • Ollivier BM, Mah RA, Ferguson TJ et al (1985) Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Syst Bacteriol 35:425–428. doi:10.1099/00207713-35-4-425

    Article  CAS  Google Scholar 

  • Paul E, Carrère H, Batstone DJ (2012) In: Paul E, Liu Y (eds) Biological sludge minimization and biomaterials/bioenergy recovery technologies. John Wiley & Sons, Inc., New Jersey, pp 373–404

    Chapter  Google Scholar 

  • Pavlostathis S, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment. Water Sci Technol 24:35–59

    CAS  Google Scholar 

  • Pervin HM, Batstone DJ, Bond PL (2013a) Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge. Syst Appl Microbiol 36:281–290. doi:10.1016/j.syapm.2013.03.003

    Article  CAS  Google Scholar 

  • Pervin HM, Dennis PG, Lim HJ et al (2013b) Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res 47:7098–7108. doi:10.1016/j.watres.2013.07.053

    Article  CAS  Google Scholar 

  • Sasaki K, Morita M, Sasaki D et al (2011) Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 112:469–472. doi:10.1016/j.jbiosc.2011.07.003

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shi J, Wang Z, Stiverson JA et al (2013) Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol 136:574–581. doi:10.1016/j.biortech.2013.02.073

    Article  CAS  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155. doi:10.1016/j.tim.2007.02.002

    Article  CAS  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M et al (2013) 454 Pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626. doi:10.1111/1574-6941.12148

    Article  CAS  Google Scholar 

  • Tandishabo K, Nakamura K, Umetsu K, Takamizawa K (2012) Distribution and role of Coprothermobacter spp. in anaerobic digesters. J Biosci Bioeng 114:518–520. doi:10.1016/j.jbiosc.2012.05.023

    Article  CAS  Google Scholar 

  • Wilén B-M, Onuki M, Hermansson M et al (2008) Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Res 42:2300–2308. doi:10.1016/j.watres.2007.12.013

    Article  Google Scholar 

  • Zamanzadeh M, Parker WJ, Verastegui Y, Neufeld JD (2013) Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems. Water Res 47:1558–1569. doi:10.1016/j.watres.2012.12.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ROUTES project. This project has received funding from the European Union’s Seventh Programme for research, technological development, and demonstration under grant agreement no. 265156. The authors are grateful to Dr. Kohei Nakamura for providing pseudomurein endopeptidase and for the precious suggestions about FISH analysis. The authors thank Raffaele Cesarini and Renato Di Lorenzi for reactors operation and VFA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rossetti.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagliano, M.C., Braguglia, C.M., Gallipoli, A. et al. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environ Sci Pollut Res 22, 7339–7348 (2015). https://doi.org/10.1007/s11356-014-3061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3061-y

Keywords

Navigation