Skip to main content
Log in

New Development of Digital Volume Correlation for the Study of Fractured Materials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This study reports on Digital Volume Correlation and its limitation in the case of fracture mechanics. Due to its sensitivity, detecting the crack opening in sub pixel level is extremely difficult and in-turn it does not provide an accurate estimation of the stress intensity factors. To address these limitations an improved DVC method was proposed to solve the uncertainty problems in the vicinity of cracks. The method (H-DVC) was developed using classical minimization process, including Heaviside functions in the kinematical field representation. Initial simulation has been performed for opening and sliding modes using classical DVC and proposed H-DVC. From these tests, crack detection limit has be evaluated to a jump of 0.1 voxels. A direct comparison of performances of DVC and H-DVC has been carried out on a fractured polymer sample to detect the kinematics discontinuity and to highlight the significant contribution of this novel approach. Furthermore, the local Crack Opening Displacement and local Stress Intensity Factor (KI) are calculated for mode-I loading (opening mode activated) condition. Parallelized computation of the proposed H-DVC method gave an access to high-resolution details, which indeed are not observable using classical DVC method. This allows a better evaluation of the distribution of localization phenomena in volumes under loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226. https://doi.org/10.1007/BF02323555

    Article  Google Scholar 

  2. Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278. https://doi.org/10.1007/BF0241098

    Article  Google Scholar 

  3. Franck C, Hong S, Maskarinec SA et al (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47:427–438. https://doi.org/10.1007/s11340-007-9037-9

    Article  Google Scholar 

  4. Germaneau A, Doumalin P, Dupré J-C (2007) Full 3D measurement of strain field by scattered light for analysis of structures. Exp Mech 47:523–532

    Article  Google Scholar 

  5. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos Part Appl Sci Manuf 39:1253–1265. https://doi.org/10.1016/j.compositesa.2007.11.011

    Article  Google Scholar 

  6. Vitone C, Cotecchia F, Viggiani G, Hall SA (2013) Strain fields and mechanical response of a highly to medium fissured bentonite clay. Int J Numer Anal Meth Geomech 37:1510–1534. https://doi.org/10.1002/nag.2095

    Article  Google Scholar 

  7. Bay BK (2008) Methods and applications of digital volume correlation. J Strain Anal Eng Des 43:745–760. https://doi.org/10.1243/03093247JSA436

    Article  Google Scholar 

  8. Hall SA, Desrues J, Viggiani G, Besuelle P, Ando E (2012) Experimental characterisation of (localised) deformation phenomena in granular geomaterials from sample down to inter-and intra-grain scales. Procedia IUTAM 4:54–65. https://doi.org/10.1016/j.piutam.2012.05.007

    Article  Google Scholar 

  9. Brault R, Germaneau A, Dupré JC et al (2013) In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation. Exp Mech 53:1143. https://doi.org/10.1007/s11340-013-9730-9

    Article  Google Scholar 

  10. Madi K, Tozzi G, Zhang QH et al (2013) Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med Eng Phys 35:1298–1312. https://doi.org/10.1016/j.medengphy.2013.02.001

    Article  Google Scholar 

  11. Roberts BC, Perilli E, Reynolds KJ (2014) Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J Biomech 47:923–934. https://doi.org/10.1016/j.jbiomech.2014.01.001

    Article  Google Scholar 

  12. Forsberg F, Mooser R, Arnold M et al (2008) 3D micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. J Struct Biol 164:255–262. https://doi.org/10.1016/j.jsb.2008.08.004

    Article  Google Scholar 

  13. Barranger Y, Doumalin P, Dupre J-C et al (2009) Evaluation of three-dimensional and two-dimensional full displacement fields of a single edge notch fracture mechanics specimen, in light of experimental data using X-ray tomography. Eng Fract Mech 76:2371–2238. https://doi.org/10.1016/j.engfracmech.2009.08.001

    Article  Google Scholar 

  14. Réthoré J, Tinnes J-P, Roux S et al (2008) Extended three-dimensional digital image correlation (X3D-DIC). Comptes Rendus Mécanique 336:643–649. https://doi.org/10.1016/j.crme.2008.06.006

    Article  MATH  Google Scholar 

  15. Limodin N, Réthoré J, Buffière J-Y et al (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images. Acta Mater 57:4090–4101. https://doi.org/10.1016/j.actamat.2009.05.005

    Article  Google Scholar 

  16. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001. https://doi.org/10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  17. Reu P (2012) Hidden components of DIC: calibration and shape function - part 1. Exp Tech 36:3–5. https://doi.org/10.1111/j.1747-1567.2012.00821.x

    Google Scholar 

  18. Valle V, Laou L, Léandry I et al (2017) Crack analysis in mudbricks under compression using specific development of stereo-digital image correlation. Exp Mech. https://doi.org/10.1007/s11340-017-0363-2

  19. Valle V, Hedan S, Cosenza P et al (2015) Digital image correlation development for the study of materials including multiple crossing cracks. Exp Mech 55:379–391. https://doi.org/10.1007/s11340-014-9948-1

    Article  Google Scholar 

  20. Wang T, Jiang Z, Kemao Q et al (2016) GPU accelerated digital volume correlation. Exp Mech 56:297–309. https://doi.org/10.1007/s11340-015-0091-4

    Article  Google Scholar 

  21. Sutton MA, McNeill SR, Jang J, Babai M (1988) Effects of subpixel image restoration on digital correlation error estimates. Opt Eng 27(10):271070. https://doi.org/10.1117/12.7976778

    Article  Google Scholar 

  22. Reu P (2012) Hidden components of 3D-DIC: interpolation and matching - part 2. Exp Tech 36:3–4. https://doi.org/10.1111/j.1747-1567.2012.00838.x

    Google Scholar 

  23. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29:261–267. https://doi.org/10.1007/BF02321405

    Article  Google Scholar 

  24. Pan B, Wang B, Wu D, Lubineau G (2014) An efficient and accurate 3D displacements tracking strategy for digital volume correlation. Opt Lasers Eng 58:126–135. https://doi.org/10.1016/j.optlaseng.2014.02.003

    Article  Google Scholar 

  25. Lekien F, Marsden J (2005) Tricubic interpolation in three dimensions. Int J Numer Methods Eng 63:455–471. https://doi.org/10.1002/nme.1296

    Article  MathSciNet  MATH  Google Scholar 

  26. Germaneau A, Doumalin P, Dupré J-C (2008) Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation. NDT E Int 41:407–415. https://doi.org/10.1016/j.ndteint.2008.04.001

    Article  Google Scholar 

  27. Réthoré J, Hild F, Roux S (2007) Shear-band capturing using a multiscale extended digital image correlation technique. Comput Methods Appl Mech Eng 196:5016–5030. https://doi.org/10.1016/j.cma.2007.06.019

    Article  MATH  Google Scholar 

  28. Sutton MA (2008) Digital image correlation for shape and deformation measurements. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics. Springer US, Boston, MA, pp 565–600

    Chapter  Google Scholar 

  29. Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    MathSciNet  MATH  Google Scholar 

  30. Ashby MF (2011) Materials selection in mechanical design. Butterworth-Heinemann, Burlington, MA

    Google Scholar 

  31. Friedrich K (1978) Analysis of crack propagation in isotactic polypropylene with different morphology. In: Fischer EW, Müller FH, Bonart R (eds) Physik der Duroplaste und anderer Polymerer. Steinkopff, Darmstadt, pp 103–112

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the French Government program “Investissements d’Avenir” (EQUIPEX GAP, reference ANR-11-EQX-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Valle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, V., Bokam, P., Germaneau, A. et al. New Development of Digital Volume Correlation for the Study of Fractured Materials. Exp Mech 59, 1–15 (2019). https://doi.org/10.1007/s11340-018-0415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0415-2

Keywords

Navigation