Experimental Mechanics

, Volume 58, Issue 5, pp 733–741 | Cite as

Asymptotical Correction to Bottom Substrate Effect Arising in AFM Indentation of Thin Samples and Adherent Cells Using Conical Tips

  • V. Managuli
  • S. Roy


The bottom substrate effect is one of the major sources of error in force map studies of adherent cells and thin soft samples in an atomic force microscope (AFM)-based force spectroscopy. Because of this, samples appear stiffer than the natural. The popular Sneddon’s contact model, which assumes the sample as infinitely thick, fails to correct this error. In the present work, a simple asymptotically correct analytical correction to the bottom substrate effect is derived through contact mechanics approach and later the model is experimentally validated on a wide range of thickness of soft polyacrylamide gel and on adherent cells.


Substrate effect correction Contact model AFM Indentation Stiffness 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11340_2018_373_MOESM1_ESM.docx (71 kb)
ESM 1 (DOCX 70 kb)


  1. 1.
    Kurland NE, Drira Z, Yadavalli VK (2012) Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 43(2):116–128CrossRefGoogle Scholar
  2. 2.
    Pillet F, Chopinet L, Formosa C, Dague É (2014) Atomic force microscopy and pharmacology: from microbiology to cancerology. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(3):1028–1050CrossRefGoogle Scholar
  3. 3.
    Morton KC, Baker LA (2014) Atomic force microscopy-based bioanalysis for the study of disease. Anal Methods 6(14):4932–4955CrossRefGoogle Scholar
  4. 4.
    Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014CrossRefGoogle Scholar
  5. 5.
    Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19(38):384003CrossRefGoogle Scholar
  6. 6.
    Lal R, Arnsdorf MF (2010) Multidimensional atomic force microscopy for drug discovery: a versatile tool for defining targets, designing therapeutics and monitoring their efficacy. Life Sci 86(15):545–562CrossRefGoogle Scholar
  7. 7.
    Sitterberg J, Özcetin A, Ehrhardt C, Bakowsky U (2010) Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm 74(1):2–13CrossRefGoogle Scholar
  8. 8.
    Johnson KL (1987) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bilodeau GG (1992) Regular pyramid punch problem. J Appl Mech 59(3):519–523CrossRefMATHGoogle Scholar
  11. 11.
    Brisc J, Sebastian KS, Adams MJ (1994) The effect of indenter geometry on the elastic response to indentation. J Phys D Appl Phys 27(6):1156CrossRefGoogle Scholar
  12. 12.
    Rico F, Roca-Cusachs P, Gavara N, Farré R, Rotger M, Navajas D (2005) Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E 72(2):021914CrossRefGoogle Scholar
  13. 13.
    Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. In proceedings of the Royal Society of London a: mathematical. Phys Eng Sci 324(1558):301–313CrossRefGoogle Scholar
  14. 14.
    Sirghi L, Ponti J, Broggi F, Rossi F (2008) Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J 37(6):935–945CrossRefGoogle Scholar
  15. 15.
    Sirghi L (2010) Atomic force microscopy indentation of living cells. Microscopy: science, technology. Applications and Education, Formatex, Badajoz, p 433–440Google Scholar
  16. 16.
    Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14(12):3320–3325CrossRefGoogle Scholar
  17. 17.
    Costa KD, Yin FCP (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng 121:462–471CrossRefGoogle Scholar
  18. 18.
    Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R (2004) Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys J 86(3):1753–1762CrossRefGoogle Scholar
  19. 19.
    Hansen JC, Lim JY, Xu LC, Siedlecki CA, Mauger DT, Donahue HJ (2007) Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. J Biomech 40(13):2865–2871CrossRefGoogle Scholar
  20. 20.
    Wagh AA, Roan E, Chapman KE, Desai LP, Rendon DA, Eckstein EC, Waters CM (2008) Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy. American journal of physiology-lung cellular and molecular. Physiology 295(1):L54–L60Google Scholar
  21. 21.
    Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82(1):253–258CrossRefGoogle Scholar
  22. 22.
    Wang B, Guo P, Auguste DT (2015) Mapping the CXCR4 receptor on breast cancer cells. Biomaterials 57:161–168CrossRefGoogle Scholar
  23. 23.
    Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613CrossRefGoogle Scholar
  24. 24.
    Efremov YM, Dokrunova AA, Bagrov DV, Kudryashova KS, Sokolova OS, Shaitan KV (2013) The effects of confluency on cell mechanical properties. J Biomech 46(6):1081–1087CrossRefGoogle Scholar
  25. 25.
    Crick SL, Yin FCP (2007) Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechanobiol 6(3):199–210CrossRefGoogle Scholar
  26. 26.
    Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810CrossRefGoogle Scholar
  27. 27.
    Santos JAC, Rebelo LM, Araujo AC, Barros EB, de Sousa JS (2012) Thickness-corrected model for nanoindentation of thin films with conical indenters. Soft Matter 8(16):4441–4448CrossRefGoogle Scholar
  28. 28.
    Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat Nanotechnol 7(11):733–736CrossRefGoogle Scholar
  29. 29.
    Gavara N (2016) Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci Rep 6:21267CrossRefGoogle Scholar
  30. 30.
    Gavara N, Chadwick RS (2016) Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech Model Mechanobiol 15(3):511–523CrossRefGoogle Scholar
  31. 31.
    Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Current protocols in cell biology 47:10.16CrossRefGoogle Scholar
  32. 32.
    Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665CrossRefGoogle Scholar
  33. 33.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873CrossRefGoogle Scholar
  34. 34.
    Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791CrossRefGoogle Scholar
  35. 35.
    MATLAB and StatisticsToolbox (2014) The MathWorks Inc. Natick, MassachusettsGoogle Scholar
  36. 36.
    Managuli V, Roy S (2017) Influencing factors in atomic force microscopy based mechanical characterization of biological cells. Exp Tech 41:673–687CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2018

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations