In Situ Micromechanical Characterization of Metallic Glass Microwires under Torsional Loading

Abstract

Small-scale metallic glasses have many applications in microelectromechanical systems (MEMS) and sensors which require good mechanical properties. Bending, tensile and compression properties of metallic glasses at micro/nano-scale have been well investigated previously. In this work, by developing a micro robotic system, we investigated the torsional behavior of Fe-Co based metallic glass microwires inside a scanning electron microscope (SEM). Benefiting from the in situ SEM imaging capability, the fracture behavior of metallic glass microwire has been uncovered clearly. Through the postmortem fractographic analysis, it can be revealed that both spiral stripes and shear bands contributed to the fracture mechanism of the microscale metallic glass. Plastic deformation of the microwires include both homogenous and inhomogeneous plastic strain, which began with the liquid-like region, then a crack formed because of shear bands and propagated along the spiral direction. Although the metallic glass microwire broke in brittle mode, the shear strain was not lower than that of conventional metal wires. Moreover, we found an inverse relationship between the plastic strain and the loading rate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Telford M (2004) The case for bulk metallic glass. Mater Today 7(3):36–43

    Article  Google Scholar 

  2. 2.

    Peter W et al (2002) Fatigue behavior of Zr 52.5 Al 10 Ti 5 cu 17.9 Ni 14.6 bulk metallic glass. Intermetallics 10(11):1125–1129

    Article  Google Scholar 

  3. 3.

    Zhang Z, Eckert J, Schultz L (2004) Fatigue and fracture behavior of bulk metallic glass. Metall Mater Trans A 35(11):3489–3498

    Article  Google Scholar 

  4. 4.

    Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–656

    Article  Google Scholar 

  5. 5.

    Schroers J (2013) Bulk metallic glasses. Phys Today 66(2):32

    Article  Google Scholar 

  6. 6.

    Jiang QK, Liu P, Ma Y et al (2012) Super elastic strain limit in metallic glass films. Sci Rep 2(11):852

    Article  Google Scholar 

  7. 7.

    Gosvami NN, Nalam PC, Exarhos AL et al (2014) Direct torsional actuation of microcantilevers using magnetic excitation. Appl Phys Lett 105(9):093101

    Article  Google Scholar 

  8. 8.

    Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85(2):77–87

    Article  Google Scholar 

  9. 9.

    Mukai T et al (2002) Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr Mater 46(1):43–47

    Article  Google Scholar 

  10. 10.

    Schuster BE et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100

    Article  Google Scholar 

  11. 11.

    Silva EC et al (2006) Size effects on the stiffness of silica nanowires. Small 2(2):239–243

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sharma P et al (2007) Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems. Nanotechnology 18(3):035302

    Article  Google Scholar 

  13. 13.

    Phan TA et al (2015) Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron Eng 135:28–31

    Article  Google Scholar 

  14. 14.

    Zhang Z et al (2003) Fracture mechanisms in bulk metallic glassy materials. Phys Rev Lett 91(4):045505

    Article  Google Scholar 

  15. 15.

    Wright WJ, Saha R, Nix WD (2001) Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans 42(4):642–649

    Article  Google Scholar 

  16. 16.

    Conner R et al (2003) Shear bands and cracking of metallic glass plates in bending. J Appl Phys 94(2):904–911

    Article  Google Scholar 

  17. 17.

    Conner RD et al (2004) Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater 52(8):2429–2434

    Article  Google Scholar 

  18. 18.

    Shen H et al (2015) Tensile properties and fracture reliability of melt-extracted Gd-rich amorphous wires. Mater Res 18:66–71

    Article  Google Scholar 

  19. 19.

    Banerjee A et al (2016) Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. J Appl Phys 119(15):155102

    Article  Google Scholar 

  20. 20.

    Sun H et al (2016) Tensile strength reliability analysis of Cu48Zr48Al4 amorphous microwires. Metals 6(12):296

    Article  Google Scholar 

  21. 21.

    Xing L-Q et al (2001) Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys Rev B 64(18):180201

    Article  Google Scholar 

  22. 22.

    Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93(25):255506

    Article  Google Scholar 

  23. 23.

    Das J et al (2005) “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 94(20):205501

    Article  Google Scholar 

  24. 24.

    Zberg B et al (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57(11):3223–3231

    Article  Google Scholar 

  25. 25.

    Guo H et al (2007) Tensile ductility and necking of metallic glass. Nat Mater 6(10):735

    Article  Google Scholar 

  26. 26.

    Schuster B et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100

    Article  Google Scholar 

  27. 27.

    Greer JR et al (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830

    Article  Google Scholar 

  28. 28.

    Uchic MD et al (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989

    Article  Google Scholar 

  29. 29.

    Han XD et al (2007) Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett 7(2):452–457

    Article  Google Scholar 

  30. 30.

    Han X et al (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19(16):2112–2118

    Article  Google Scholar 

  31. 31.

    Wang L et al (2013) In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 4:2413

    Article  Google Scholar 

  32. 32.

    Shang W et al (2016) Vision-based nano robotic system for high-throughput non-embedded cell cutting. Sci Rep 6:22534

  33. 33.

    Shen Y et al (2015) Multidirectional image sensing for microscopy based on a rotatable robot. Sensors 15(12):31566–31580

    Article  Google Scholar 

  34. 34.

    Wan W et al (2016) Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Adv 6(9):095309

    Article  Google Scholar 

  35. 35.

    Shen Y et al (2016) Automatic sample alignment under microscopy for 360° imaging based on the nanorobotic manipulation system. IEEE T Robot 33(1):220–226

  36. 36.

    Jiang C, Lu H, Cao K et al (2017) In situ SEM torsion test of metallic glass microwires based on micro robotic manipulation. Scanning 2017:1–7

    Google Scholar 

  37. 37.

    Guan P et al (2010) Stress-temperature scaling for steady-state flow in metallic glasses. Phys Rev Lett 104(20):205701

    Article  Google Scholar 

  38. 38.

    Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58

    Article  Google Scholar 

  39. 39.

    Lu Z et al (2014) Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett 113(4):045501

    Article  Google Scholar 

  40. 40.

    Zhang ZF et al (2003) Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater 51(4):1167–1179

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shenzhen Science and Technology Innovation Committee under the grant JCYJ20160401100358589, the National Natural Science Foundation of China (Grant Nos. 51301147, 61773326), the Research Grants Council of the Hong Kong Special Administrative Region of China (Grant Nos. CityU 11209914, CityU 11278716).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Y. Yang or Y. Shen or Y. Lu.

Additional information

Yang Lu is a member of the Society for Experimental Mechanics.

Electronic supplementary material

(MP4 2111 kb)

(MP4 673 kb)

(MP4 825 kb)

ESM 1

(DOCX 2962 kb)

ESM 2

(MP4 2111 kb)

ESM 3

(MP4 2413 kb)

ESM 4

(MP4 673 kb)

ESM 5

(MP4 3504 kb)

ESM 6

(MP4 825 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Jiang, C., Lu, H. et al. In Situ Micromechanical Characterization of Metallic Glass Microwires under Torsional Loading. Exp Mech 59, 361–368 (2019). https://doi.org/10.1007/s11340-018-00464-1

Download citation

Keywords

  • Micromechanical testing
  • Metallic glass
  • Microwire
  • Torsion
  • Fracture behavior