Skip to main content
Log in

Hybrid Split Hopkinson Pressure Bar to Identify Impulse-dependent Wave Characteristics of Viscoelastic Phononic Crystals

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

There has recently been a rising interest in the nonlinear wave transmission behavior of phononic crystals. However, experimental studies focusing on the nonlinear wave transmission behavior of phononic crystals have been predominantly performed on 1-D granular crystals using customized impact apparatus. In this study, we explore split Hopkinson pressure bar (SHPB) apparatus as a tool to study the nonlinear wave characteristics of a 1-D continuum viscoelastic phononic crystal. In order to resolve experimental challenges relating to signal-to-noise ratios and input impulse magnitudes, we propose a hybrid SHPB system composed of an aluminum input bar and a nylon output bar. For a considered viscoelastic phononic crystal, the application of the hybrid SHPB apparatus enabled us to observe some low transmission frequency zones, which were not identified from the linearly perturbed settings such as the analytical solution and the electrodynamic shaker tests. We further conducted a series of additional FE simulations to ensure the appearance of impulse-dependent low transmission frequency zones of the considered viscoelastic phononic crystal specimen. The additional sets of simulations evidently illustrate the impulse-dependent evolution of wave transmission coefficients, and demonstrate that the impulse-dependent wave transmission behavior can be experimentally investigated by adopting the hybrid SHPB apparatus. Thus, this study shows that the conventional SHPB apparatus can be employed effectively to study the emerging research field of nonlinear wave characteristics of phononic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025

    Article  Google Scholar 

  2. Sigalas M, Economou E (1993) Band structure of elastic waves in two dimensional systems. Solid State Commun 86(3):141–143

    Article  Google Scholar 

  3. Boechler N, Yang J, Theocharis G, Kevrekidis PG, Daraio C (2011) Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells. J Appl Phys 109(7):074906

    Article  Google Scholar 

  4. Bousfia A, El Boudouti EH, Djafari-Rouhani B, Bria D, Nougaoui A, Velasco VR (2001) Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures. Surf Sci 482-485(2):1175–1180

    Article  Google Scholar 

  5. Cao WW, Qi WK (1995) Plane wave propagation in finite composites. J Appl Phys 78(7):4627–4632

    Article  Google Scholar 

  6. Manzanares-Martinez B, Sanchez-Dehesa J, Hakansson A, Cervera F, Ramos-Mendieta F (2004) Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems. Appl Phys Lett 85(1):154–156

    Article  Google Scholar 

  7. Liang B, Yuan B, Cheng JC (2009) Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Phys Rev Lett 103(10)

  8. Liang B, Guo XS, Tu J, Zhang D, Cheng JC (2010) An acoustic rectifier. Nat Mater 9(12):989–992

    Article  Google Scholar 

  9. Ma C, Parker RG, Yellen BB (2013) Optimization of an acoustic rectifier for unidirectional wave propagation in periodic mass-spring lattices. J Sound Vib 332(20):4876–4894

    Article  Google Scholar 

  10. Saini G, Pezeril T, Torchinsky DH, Yoon J, Kooi SE, Thomas EL, Nelson KA (2011) Pulsed laser characterization of multicomponent polymer acoustic and mechanical properties in the sub-ghz regime. J Mater Res 22(3):719–723

    Article  Google Scholar 

  11. Casadei F, Bertoldi K (2014) Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials. J Appl Phys 115(3):034907

    Article  Google Scholar 

  12. Policarpo H, Neves MM, Ribeiro AMR (2010) Dynamical response of a multi-laminated periodic bar: Analytical, numerical and experimental study. Shock Vib 17(4–5):521–535

    Article  Google Scholar 

  13. Yan-Lin W, Ming-Wen C, Zi-Dong W (2011) Study on band gap structure of one dimensional phononic crystals. In: Jiang Z, Han J, Liu X (eds) New Materials and Advanced Materials, vol 152-153. Trans Tech Publications, Zurich, Switzerland, pp 1696–1699

    Google Scholar 

  14. Hayashi T, Morimoto Y, Serikawa M, Tokuda K, Tanaka T (1983) Experimental study on cut-off phenomenon for layered composite. Bulletin of JSME 26(211):23–29

    Article  Google Scholar 

  15. Robinson CW, Leppelmeier GW (1974) Experimental verification of dispersion relations for layered composites. J Appl Mech 41(1):89–91

    Article  Google Scholar 

  16. Manktelow K, Narisetti RK, Leamy MJ, Ruzzene M (2013) Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech Syst Signal Process 39(1–2):32–46

    Article  Google Scholar 

  17. Narisetti RK, Ruzzene M, Leamy MJ (2011) A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J Vib Acoust 133(6):061020

    Article  Google Scholar 

  18. Narisetti RK, Ruzzene M, Leamy MJ (2012) Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion 49(2):394–410

    Article  MathSciNet  MATH  Google Scholar 

  19. Ahsan Z, Jayaprakash KR (2016) Evolution of a primary pulse in the granular dimers mounted on a linear elastic foundation: an analytical and numerical study. Phys Rev E 94(4):043001

    Article  Google Scholar 

  20. Ganesh R, Gonella S (2014) Invariants of nonlinearity in the phononic characteristics of granular chains. Phys Rev E 90(2):023205

    Article  Google Scholar 

  21. Daraio C, Nesterenko V, Herbold E, Jin S (2005) Strongly nonlinear waves in a chain of teflon beads. Phys Rev E 72(1):016603

    Article  Google Scholar 

  22. Daraio C, Nesterenko V, Herbold E, Jin S (2006) Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys Rev E 73(2, 2):026610

    Article  Google Scholar 

  23. Herbold EB, Kim J, Nesterenko VF, Wang SY, Daraio C (2009) Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap. Acta Mech 205(1–4):85–103

    Article  MATH  Google Scholar 

  24. Yang J, Daraio C (2013) Frequency- and amplitude-dependent transmission of stress waves in curved one-dimensional granular crystals composed of diatomic particles. Exp Mech 53(3):469–483

    Article  Google Scholar 

  25. Marechal P, Lenoir O, Khaled A, MEC EK, Chenouni D (2014) Viscoelasticity effect on a periodic plane medium immersed in water. Acta Acustica united with Acustica 100(6):1036–1043

    Article  Google Scholar 

  26. Mukherjee S, Lee E (1978) Dispersion relations and mode shapes for waves in laminated viscoelastic composites by variational methods. Int J Solids Struct 14(1):1–13

    Article  MATH  Google Scholar 

  27. Babaee S, Wang P, Bertoldi K (2015) Three-dimensional adaptive soft phononic crystals. J Appl Phys 117(24):244903

    Article  Google Scholar 

  28. Mousanezhad D, Babaee S, Ghosh R, Mahdi E, Bertoldi K, Vaziri A (2015) Honeycomb phononic crystals with self-similar hierarchy. Phys Rev B 92(10):104304

    Article  Google Scholar 

  29. Bergstrom J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. Journal of the Mechanics and Physics of Solids 46:931–954

    Article  MATH  Google Scholar 

  30. Shim JS, Mohr D (2011) Rate dependent finite strain constitutive model of polyurea. Int J Plast 27:868–886

    Article  MATH  Google Scholar 

  31. Yeoh O (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66:754–771

    Article  Google Scholar 

  32. Brinson HF, Brinson LC (2008) Polymer Engineering Science and Viscoelasticity: An Introduction. Springer Science+Business Media, New York

    Book  Google Scholar 

  33. Winter HH, Mours M (2006) The cyber infrastructure initiative for rheology. Rheol Acta 45(4):331–338

    Article  Google Scholar 

  34. Charalambides MN, Wanigasooriya L, Williams JG, Goh SM, Chakrabarti S (2006) Large deformation extensional rheology of bread dough. Rheol Acta 46(2):239–248

    Article  Google Scholar 

  35. Miller K (1999) Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J Biomech 32(5):531–537

    Article  Google Scholar 

  36. ABAQUS (2012) ABAQUS Standard Analysis User's Manual Version 6.12. Pawtuchet

  37. Collet M, Ouisse M, Ruzzene M, Ichchou MN (2011) Floquet-bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems. Int J Solids Struct 48(20):2837–2848

    Article  Google Scholar 

  38. Farzbod F, Leamy MJ (2011) Analysis of bloch's method in structures with energy dissipation. J Vib Acoust 133(5):051010

    Article  Google Scholar 

  39. Sprik R, Wegdam GH (1998) Acoustic band gaps in composites of solids and viscous liquids. Solid State Commun 106(2):77–81

    Article  Google Scholar 

  40. Zhao YP, Wei PJ (2009) The band gap of 1d viscoelastic phononic crystal. Comput Mater Sci 46(3):603–606

    Article  MathSciNet  Google Scholar 

  41. Andreassen E, Jensen JS (2013) Analysis of phononic bandgap structures with dissipation. J Vib Acoust 135(4):041015

    Article  Google Scholar 

  42. Haque ABMT, Ghachi RF, Alnahhal WI, Aref A, Shim J (2018) Sagittal plane waves in infinitely periodic multilayered composites composed of alternating viscoelastic and elastic solids. J Appl Mech. https://doi.org/10.1115/1.4039039

  43. Naciri T, Navi P, Granacher O (1990) On harmonic wave propagation in multilayered viscoelastic media. Int J Mech Sci 32(3):225–231

    Article  MATH  Google Scholar 

  44. Tanaka K, Kon-No A (1980) Harmonic viscoelastic waves propagating normal to the layers of laminated media. Bulletin of JSME 23(181):1092–1099

    Article  MathSciNet  Google Scholar 

  45. Ashcroft NW, Mermin ND (1976) Solid State Physics. Saunders College, Philadelphia

    MATH  Google Scholar 

  46. Bo Y, Yingren Z, Xiud L (2015) Discussion on dynamic numerical simulation for earthquake of immersed tunnel at seabed. The Open Civil Engineering Journal 9(1):773–782

    Article  Google Scholar 

  47. Mendes N, Lourenco PB (2010) Seismic assessment of masonry “gaioleiro” buildings in lisbon, portugal. J Earthq Eng 14(1):80–101

    Article  Google Scholar 

  48. Shim J, Mohr D (2009) Using split hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates. International Journal of Impact Engineering 36(9):1116–1127

    Article  Google Scholar 

  49. Feng RX, Liu KX (2012) Tuning of band-gap of phononic crystals with initial confining pressure. Chinese Physics B 21(12):126301

    Article  Google Scholar 

  50. Feng RX, Liu KX (2012) Tuning the band-gap of phononic crystals with an initial stress. Phys B Condens Matter 407(12):2032–2036

    Article  Google Scholar 

  51. O'Brien D, Mather P, White S (2001) Viscoelastic properties of an epoxy resin during cure. J Compos Mater 35:883–904

    Article  Google Scholar 

  52. Gary G, Klepaczko J, Zhao H (1995) Generalization of split hopkinson bar technique to use viscoelastic bars. International Journal of Impact Engineering 16:529–530

    Article  Google Scholar 

  53. Wang LL, Labibes K, Azari Z, Pluvinage G (1994) Generalization of split hopkinson bar technique to use viscoelastic bars. International Journal of Impact Engineering 15(5):669–686

    Article  Google Scholar 

  54. Chen W, Zhang B, Forrestal MJ (1999) A split hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85

    Article  Google Scholar 

  55. Pervin F, Chen WW (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42(6):731–735

    Article  Google Scholar 

  56. Ahonsi B, Harrigan JJ, Aleyaasin M (2012) On the propagation coefficient of longitudinal stress waves in viscoelastic bars. International Journal of Impact Engineering 45:39–51

    Article  Google Scholar 

  57. Othman R (2014) On the use of complex young's modulus while processing polymeric kolsky hopkinson bars' experiments. International Journal of Impact Engineering 73:123–134

    Article  Google Scholar 

  58. Bacon C (1998) An experimental method for considering dispersion and attenuation in a viscoelastic hopkinson bar. Exp Mech 38(4):242–249

    Article  Google Scholar 

  59. Lundberg B, Blanc R (1988) Determination of mechanical material properties from the two-points response of an impacted linearly viscoelastic rod specimen. J Sound Vib 126:97–108

    Article  Google Scholar 

  60. Graff KF (1991) Wave Motion in Elastic Solids. Dover Publications, New York

    MATH  Google Scholar 

  61. Halvorsen WG, Brown DL (1977) lmpulse technique for structural frequency response testing. Sound and Vibration 11(11):8–18

    Google Scholar 

  62. Wickramarachi P (2003) Effects of windowing on the spectral content of a signal. Sound and Vibration 37(1):10–11

    Google Scholar 

  63. Fujikawa M, Takashi M (2003) Prony series approximation with generalized maxwell model based on collocation method. Japanese Society of Experimental Mechanics 3(4):278–284

    Google Scholar 

  64. Nuruzzaman DM, Chowdhury MA (2012) Effect of normal load and sliding velocity on friction coefficient of aluminum sliding against different pin materials. American Journal of Materials Science 2(1):26–31

    Article  Google Scholar 

  65. Kagan VA, Weitzel SP (2002) Smart structure and integrated system: reinforced nylon and aluminum self-tapping screws. International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress, Paris

    Google Scholar 

  66. Avallone EA, Baumeister T III (2006) Marks' Standard Handbook for Mechanical Engineers, 11th edn. McGraw-Hill Professional Publishing, New York City

    Google Scholar 

  67. Bartlett BW (1944) Coefficients of friction greater than unity. Am J Phys 12(1):48

    Article  MathSciNet  Google Scholar 

  68. Booser ER (1983) CRC Handbook of Lubrication: Application and Maintenance. CRC Publications, Boca Raton

    Google Scholar 

  69. Moran J, Sucharitakul T (2015) Variations in dry sliding friction coefficients with velocity

  70. Cook CE (1960) Pulse compression-key to more efficient radar transmission. Proceedings of the Institute of Radio Engineers 48(3):310–316

    Google Scholar 

  71. Klauder JR, Price AC, Darlington S, Albersheim WJ (1960) The theory and design of chirp radars. Bell Syst Tech J 39(4):745–808

    Article  Google Scholar 

  72. Gerlach R, Kettenbeil C, Petrinic N (2012) A new split hopkinson tensile bar design. International Journal of Impact Engineering 50(1):63–67

    Article  Google Scholar 

  73. Mohr D, Gary G (2007) M-shaped specimen for the high-strain rate tensile testing using a split hopkinson pressure bar apparatus. Exp Mech 47(5):681–692

    Article  Google Scholar 

  74. Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split hopkinson bar to study rate effects in 1100-0 aluminum. J Appl Mech 38(1):83–91

    Article  Google Scholar 

  75. Xue Q, Shen LT, Bai YL (1995) A modified split hopkinson torsional bar in studying shear localization. Meas Sci Technol 6(11):1557–1565

    Article  Google Scholar 

  76. Trexler MM, Lennon AM, Wickwire AC, Harrigan TP, Luong QT, Graham JL, Maisano AJ, Roberts JC, Merkle AC (2011) Verification and implementation of a modified split hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading. J Mech Behav Biomed Mater 4(8):1920–1928

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Qatar University Center for Advanced Materials facilitating the DMA tests of the considered silicon rubber. Thanks are also due to the support of the Center for Computational Research at the University at Buffalo (UB). The authors acknowledge the partial financial support through Qatar National Research Fund (QNRF) Grant No. NPRP8-1568-2-666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shim.

Ethics declarations

Conflict of Interests

All the authors declare that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, A., Ghachi, R.F., Alnahhal, W.I. et al. Hybrid Split Hopkinson Pressure Bar to Identify Impulse-dependent Wave Characteristics of Viscoelastic Phononic Crystals. Exp Mech 59, 95–109 (2019). https://doi.org/10.1007/s11340-018-00441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-00441-8

Keywords

Navigation