Experimental Mechanics

, Volume 57, Issue 4, pp 615–635 | Cite as

Characterization of Viscoelasticity Due to Shear Wave Propagation: a Comparison of Existing Methods Based on Computational Simulation and Experimental Data

  • J. F. S. Costa-Júnior
  • M. A. D. Elsztain
  • A. M. F. L. M. de Sá
  • J. C. Machado


Shear wave propagation causes microvibrations within a medium; measuring the wave attenuation coefficient, α, and phase velocity, c s , the medium shear modulus, μ, and shear viscosity, η, are determined based on a viscoelastic model that includes both c s and α. The present work compares the performances of nine processing methods, based on cross-correlation and quadrature demodulation, used to extract the motion waveform from a sequence of radio-frequency (RF) echo signals from the medium. Kalman filtering determined the amplitude and the phase of the extracted motion waveform. The comparisons were done with regard to computational simulation and experiments with a gel phantom. Estimates obtained for μ and η of the medium considered different conditions for the vibration amplitude and the signal-to-noise ratio (SNR) of the RF echo signals and the waveform extracted by means of single frequency and shear wave dispersion ultrasound vibration (SDUV) methods. According to the simulated results, the cross-correlation-based processing techniques are more precise and accurate in comparison to quadrature demodulation techniques. The results for c s , α, μ and η of the phantom and those obtained under the same setup conditions for experimental and computational tests agree with each other. Comparing the estimates based on single frequency and SDUV techniques, they presented similar performances at high SNR of the RF echo signal. On the other hand, the former technique prevailed for low SNR.


Elastography Shear wave Shear modulus Viscosity Motion signal processing algorithms Kalman filters 



The authors are grateful to Prof. Dr. Renan M. V. Rodrigues de Almeida for assistance with the statistical analysis, as well as Ms. Laura M. Pires and Mr. Luiz H. de Araújo Vasconcelos for helping in assembling the probing system. Finally, the authors also thank CAPES, CNPq and FAPERJ for their financial support.


  1. 1.
    Chen SG, Sanchez W, Callstrom MR, Gorman B, Lewis JT, Sanderson SO, Greenleaf JF, Xie H, Shi Y, Pashley M, Shamdasani V, Lachman M, Metz S (2013) Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology 266:964–970. doi: 10.1148/radiol.12120837 CrossRefGoogle Scholar
  2. 2.
    Selzo MR, Gallippi CM (2013) Viscoelastic response (VisR) imaging for assessment of viscoelasticity in Voigt materials. IEEE Trans Ultrason Ferroelectr Freq Control 60:2488–2500. doi: 10.1109/TUFFC.2013.2848 CrossRefGoogle Scholar
  3. 3.
    Doherty JR, Trahey GE, Nightingale KR, Palmeri ML (2013) Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 60:685–701. doi: 10.1109/TUFFC.2013.2617 CrossRefGoogle Scholar
  4. 4.
    Gennisson JL, Deffieux T, Fink M, Tanter M (2013) Ultrasound elastography: principles and techniques. Diagn Interv Imaging 94:487–495. doi: 10.1016/j.diii.2013.01.022 CrossRefGoogle Scholar
  5. 5.
    Ponnekanti H, Ophir J, Cespedes I (1994) Ultrasonic imaging of the stress distribution in elastic media due to an external compressor. Ultrasound Med Biol 20:27–33. doi: 10.1016/0301-5629(94)90014-0 CrossRefGoogle Scholar
  6. 6.
    Varghese T, Zagzebski JA, Frank G, Madsen EL (2002) Elastographic imaging using a handheld compressor. Ultrason Imaging 24:25–35. doi: 10.1177/016173460202400103 CrossRefGoogle Scholar
  7. 7.
    Catheline S, Wu F, Fink M (1999) A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J Acoust Soc Am 105:2941–2950. doi: 10.1121/1.426907 CrossRefGoogle Scholar
  8. 8.
    Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M (2002) Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 49:436–446. doi: 10.1109/58.996561 CrossRefGoogle Scholar
  9. 9.
    Nightingale K, McAleavey S, Trahey G (2003) Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 29:1715–1723. doi: 10.1016/j.ultrasmedbio.2003.08.008 CrossRefGoogle Scholar
  10. 10.
    Sabra KG, Conti S, Roux P, Kuperman WA (2007) Passive in vivo elastography from skeletal muscle noise. Appl Phys Lett 90. doi: 10.1063/1.2737358
  11. 11.
    Gallot T, Catheline S, Roux P, Brum J, Benech N, Negreira C (2011) Passive elastography: shear-wave tomography from physiological-noise correlation in soft tissues. IEEE Trans Ultrason Ferroelectr Freq Control 58:1122–1126. doi: 10.1109/TUFFC.2011.1920 CrossRefGoogle Scholar
  12. 12.
    Mitri FG, Urban MW, Fatemi M, Greenleaf JF (2011) Shear wave dispersion ultrasonic vibrometry for measuring prostate shear stiffness and viscosity: an in vitro pilot study. IEEE Trans Biomed Eng 58:235–242. doi: 10.1109/TBME.2010.2053928 CrossRefGoogle Scholar
  13. 13.
    Urban MW, Chen SG, Greenleaf JF (2009) Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry. IEEE Trans Ultrason Ferroelectr Freq Control 56:748–758. doi: 10.1109/TUFFC.2009.1097 CrossRefGoogle Scholar
  14. 14.
    Urban MW, Greenleaf JF (2008) Harmonic pulsed excitation and motion detection of a vibrating reflective target. J Acoust Soc Am 123:519–533. doi: 10.1121/1.2805666 CrossRefGoogle Scholar
  15. 15.
    Urban MW, Chen SG, Greenleaf JF (2008) Harmonic motion detection in a vibrating scattering medium. IEEE Trans Ultrason Ferroelectr Freq Control 55:1956–1974. doi: 10.1109/TUFFC.887 CrossRefGoogle Scholar
  16. 16.
    Huang CC, Chen PY, Shih CC (2013) Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med Phys:40. doi: 10.1118/1.4794493
  17. 17.
    Amador C, Urban MW, Kinnick R, Chen S, Greenleaf JF (2013) In vivo swine kidney viscoelasticity during acute gradual decrease in renal blood flow: pilot study. Rev Ing Biomed 7:68–78Google Scholar
  18. 18.
    Amador C, Urban MW, Chen S, Chen Q, An KN, Greenleaf JF (2011) Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms. IEEE Trans Biomed Eng 58:1706–1714. doi: 10.1109/TBME.2011.2111419 CrossRefGoogle Scholar
  19. 19.
    Pay-Yu C, Cho-Chiang S, Chih-Chung H (2012) Assessing the viscoelastic properties of thrombus using shear wave dispersion ultrasound vibrometry. In: Proc. IEEE Int. Ultrason. Symp. (IUS), Dresden, Germany. doi: 10.1109/ULTSYM.2012.0589
  20. 20.
    Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409. doi: 10.1109/TUFFC.2004.1295425 CrossRefGoogle Scholar
  21. 21.
    DeWall RJ, Slane LC, Lee KS, Thelen DG (2014) Spatial variations in Achilles tendon shear wave speed. J Biomech 47:2685–2692. doi: 10.1016/j.jbiomech.2014.05.008 CrossRefGoogle Scholar
  22. 22.
    Catheline S, Gennisson JL, Fink M (2003) Measurement of elastic nonlinearity of soft solid with transient elastography. J Acoust Soc Am 114:3087–3091. doi: 10.1121/1.1610457 CrossRefGoogle Scholar
  23. 23.
    Pinton GF, Dahl JJ, Trahey GE (2006) Rapid tracking of small displacements with ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 53:1103–1117. doi: 10.1109/TUFFC.2006.1642509 CrossRefGoogle Scholar
  24. 24.
    Pinton GF, McAleavey SA, Dahl JJ, Nightingale KR, Trahey GE (2005) Real-time acoustic radiation force impulse imaging. In: Proc. SPIE 5750, Medical Imaging 2005, San Diego, United States. doi: 10.1117/12.595846
  25. 25.
    Zheng Y, Chen S, Tan W, Kinnick R, Greenleaf JF (2007) Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter. IEEE Trans Ultrason Ferroelectr Freq Control 54:290–300. doi: 10.1109/TUFFC.2007.243 CrossRefGoogle Scholar
  26. 26.
    Chen S, Urban MW, Pislaru C, Kinnick R, Yi Z, Aiping Y, Greenleaf J (2009) Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control 56:55–62. doi: 10.1109/TUFFC.2009.1005 CrossRefGoogle Scholar
  27. 27.
    Chen X, Shen YY, Zheng Y, Lin HM, Guo YR, Zhu Y, Zhang XY, Wang TF, Chen SP (2013) Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model. Ultrasound Med Biol 39:2091–2102. doi: 10.1016/j.ultrasmedbio.2013.05.020 CrossRefGoogle Scholar
  28. 28.
    Shigao C, Urban MW, Greenleaf JF, Yi Z, Aiping Y (2008) Quantification of liver stiffness and viscosity with SDUV: In vivo animal study. In: Proc. IEEE Int. Ultrason. Symp. (IUS), Beijing, China. doi: 10.1109/ULTSYM.2008.0157
  29. 29.
    Zheng Y, Yao A, Chen S, Greenleaf JF (2008) Rapid shear wave measurement for SDUV with broadband excitation pulses and non-uniform sampling. In: Proc. IEEE Int. Ultrason. Symp. (IUS), Beijing, China. doi: 10.1109/ULTSYM.2008.0053
  30. 30.
    Zheng Y, Chen S, Zhang X, Greenleaf J (2004) Detection of shear wave propagation in an artery using pulse echo ultrasound and Kalman filtering. In: Proc. IEEE Int. Ultrason. Symp. (IUS), Montreal, Canada. doi: 10.1109/ULTSYM.2004.1418015
  31. 31.
    Zheng Y, Chen S, Tan W, Greenleaf JF (2003) Kalman filter motion detection for vibro-acoustography using pulse echo ultrasound. Proc. IEEE Int. Ultrason. Symp. (IUS), Honolulu, United States. doi: 10.1109/ULTSYM.2003.1293265
  32. 32.
    Guo YR, Chen X, Lin H, Zhang X (2013) In-vitro quantification of rat liver viscoelasticity with shear wave dispersion ultrasound vibrometry. In: 35th Annual International Conf IEEE Eng Med Biol Soc, Osaka, Japan. doi: 10.1109/EMBC.2013.6609900
  33. 33.
    Sandrin L, Fourquet B, Hasquenoph JM et al (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29:1705–1713. doi: 10.1016/j.ultrasmedbio.2003.07.001 CrossRefGoogle Scholar
  34. 34.
    Hoeks APG, Arts TGJ, Brands PJ, Reneman RS (1993) Comparison of the performance of the RF cross-correlation and Doppler autocorrelation technique to estimate the mean velocity of simulated ultrasound signals. Ultrasound Med Biol 19:727–740. doi: 10.1016/0301-5629(93)90090-B CrossRefGoogle Scholar
  35. 35.
    Hasegawa H, Kanai H (2006) Improving accuracy in estimation of artery-wall displacement by referring to center frequency of RF echo. IEEE Trans Ultrason Ferroelectr Freq Control 53:52–63. doi: 10.1109/TUFFC.2006.1588391 CrossRefGoogle Scholar
  36. 36.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134. doi: 10.1016/0161-7346(91)90079-W CrossRefGoogle Scholar
  37. 37.
    Cespedes I, Huang Y, Ophir J, Spratt S (1995) Methods for estimation of subsample time delays of digitized echo signals. Ultrason Imaging 17:142–171. doi: 10.1177/016173469501700204 CrossRefGoogle Scholar
  38. 38.
    Zheng Y, Greenleaf JF (1999) Stable and unbiased flow turbulence estimation from pulse echo ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 46:1074–1087. doi: 10.1109/58.796113 CrossRefGoogle Scholar
  39. 39.
    Cabot R (1981) A note on the application of the Hilbert transform to time delay estimation. IEEE T Acoust Speech 29:607–609. doi: 10.1109/TASSP.1981.1163564 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Chen S, Fatemi M, Greenleaf JF (2004) Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am 115:2781–2785. doi: 10.1121/1.1739480 CrossRefGoogle Scholar
  41. 41.
    Kasai C, Namekawa K, Koyano A, Omoto R (1985) Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE T Son Ultrason 32:458–464. doi: 10.1109/ULTSYM.1985.198654 CrossRefGoogle Scholar
  42. 42.
    Catheline S, Gennisson JL, Delon G, Fink M, Sinkus R, Abouelkaram S, Culioli J (2004) Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J Acoust Soc Am 116:3734–3741. doi: 10.1121/1.1815075 CrossRefGoogle Scholar
  43. 43.
    Brown RG, Hwang PYC (1992) Introduction to random signals and applied Kalman filtering. Wiley, New YorkMATHGoogle Scholar
  44. 44.
    Lai X, Torp H (1999) Interpolation methods for time-delay estimation using cross-correlation method for blood velocity measurement. IEEE Trans Ultrason Ferroelectr Freq Control 46:277–290. doi: 10.1109/58.753016 CrossRefGoogle Scholar
  45. 45.
    Boucher RE, Hassab JC (1981) Analysis of discrete implementation of generalized cross correlator. IEEE T Acoust Speech 29:609–611. doi: 10.1109/TASSP.1981.1163623 CrossRefGoogle Scholar
  46. 46.
    Foster SG, Embree PM, O'Brien WR (1990) Flow velocity profile via time-domain correlation: error analysis and computer simulation. IEEE Trans Ultrason Ferroelectr Freq Control 37:164–175. doi: 10.1109/58.55306 CrossRefGoogle Scholar
  47. 47.
    Chen K, Yao AP, Zheng EE, Lin JL, Zheng Y (2001) Shear wave dispersion ultrasound vibrometry based on a different mechanical model for soft tissue characterization. J Ultrasound Med 31:2001–2011CrossRefGoogle Scholar
  48. 48.
    Zhao H, Urban MW, Greenleaf JF, Shigao C (2010) Elasticity and viscosity estimation from shear wave velocity and attenuation: A simulation study. In: Proc. IEEE Int. Ultrason. Symp. (IUS), San Diego, United States. doi: 10.1109/ULTSYM.2010.5935462
  49. 49.
    Karpiouk AB, Aglyamov SR, Ilinskii YA, Zabolotskaya EA, Emelianov SY (2009) Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity. IEEE Trans Ultrason Ferroelectr Freq Control 56:2380–2387. doi: 10.1109/TUFFC.2009.1326 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2017

Authors and Affiliations

  • J. F. S. Costa-Júnior
    • 1
  • M. A. D. Elsztain
    • 1
  • A. M. F. L. M. de Sá
    • 1
  • J. C. Machado
    • 1
  1. 1.Biomedical Engineering Program, COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations