Experimental Mechanics

, Volume 57, Issue 4, pp 505–520 | Cite as

Experimental Study of Nonlinear Resonances and Anti-Resonances in a Forced, Ordered Granular Chain

  • Y. Zhang
  • D. Pozharskiy
  • D. M. McFarland
  • P. G. Kevrekidis
  • I. G. Kevrekidis
  • A. F. Vakakis


We experimentally study a one-dimensional uncompressed granular chain composed of a finite number of identical spherical elastic beads with Hertzian interactions. The chain is harmonically excited by an amplitude- and frequency-dependent boundary drive at its left end and has a fixed boundary at its right end. Such ordered granular media represent an interesting new class of nonlinear acoustic metamaterials, since they exhibit essentially nonlinear acoustics and have been designated as “sonic vacua” due to the fact that their corresponding speed of sound (as defined in classical acoustics) is zero. This paves the way for essentially nonlinear and energy-dependent acoustics with no counterparts in linear theory. We experimentally detect time-periodic, strongly nonlinear resonances whereby the particles (beads) of the granular chain respond at integer multiples of the excitation period, and which correspond to local peaks of the maximum transmitted force at the chain’s right, fixed end. In between these resonances we detect a local minimum of the maximum transmitted forces corresponding to an anti-resonance in the stationary-state dynamics. The experimental results of this work confirm previous theoretical predictions, and verify the existence of strongly nonlinear resonance responses in a system with a complete absence of any linear spectrum; as such, the experimentally detected nonlinear resonance spectrum is passively tunable with energy and sensitive to dissipative effects such as internal structural damping in the beads, and friction or plasticity effects. We compare the experimental results with direct numerical simulations of the granular network and deduce satisfactory agreement.


Nonlinear resonance and anti-resonance Granular media Sonic vacua 


  1. 1.
    Carretero-Gonzalez R, Khatri D, Porter MA, Kevrekidis PG, Daraio C (2009) Dissipative solitary waves in granular crystals. Phys Rev Lett 102:024102CrossRefGoogle Scholar
  2. 2.
    Charalampidis EG, Li F, Chong C, Yang J, Kevrekidis PG (2015) Time-periodic solutions of driven damped trimer granular crystals. Math Probl Eng 830978Google Scholar
  3. 3.
    Coste C, Falcon E, Fauve S (1997) Solitary waves in a chain of beads under Hertz contact. Phys Rev E 56(5):6104–6117CrossRefGoogle Scholar
  4. 4.
    Chong C, Li F, Yang J, Williams MO, Kevrekidis IG, Kevrekidis PG, Daraio C (2014) Damped-driven granular chains: an ideal playground for dark breathers and multibreathers. Phys Rev E 89(3):032924CrossRefGoogle Scholar
  5. 5.
    Daraio C, Nesterenko V, Herbold B, Jin S (2006) Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys Rev E 73(2):026610CrossRefGoogle Scholar
  6. 6.
    Hasan M, Cho S, Remick K, Vakakis A, McFarland D, Kriven W (2015) Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular media embedded in matrix. Granul Matter 17:49–72CrossRefGoogle Scholar
  7. 7.
    Herbold E, Nesterenko V (2007) Shock wave structure in a strongly nonlinear lattice with viscous dissipation. Phys Rev E 75(2):021304CrossRefGoogle Scholar
  8. 8.
    Herbold E, Kim J, Nesterenko V, Wang S, Daraio C (2009) Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap. Acta Mech 205(1–4):85–103CrossRefMATHGoogle Scholar
  9. 9.
    Hoogeboom C, Man Y, Boechler N, Theocharis G, Kevrekidis PG, Kevrekidis IG, Daraio C (2013) Hysteresis loops and multi-stability: from periodic orbits to chaotic dynamics (and back) in diatomic granular crystals. EPL 101:44003CrossRefGoogle Scholar
  10. 10.
    James G (2011) Nonlinear waves in Newton’s cradle and the discrete p-Schrödinger equation. Math Models Methods Appl Sci 21:2335–2377MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jayaprakash K, Starosvetsky Y, Vakakis A, Peeters M, Kerschen G (2011) Nonlinear normal modes and band zones in granular chains with no precompression. Nonlinear Dyn 63(3):359–385MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kevrekidis PG (2011) Non-linear waves in lattices: past, present, future. IMA J Appl Math 76:389–423MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Law KJH, Stuart AM, Zygalakis KC (2015) Data assimilation: a mathematical introduction. SpringerGoogle Scholar
  14. 14.
    Lydon J, Jayaprakash K, Ngo D, Starosvetsky Y, Vakakis AF, Daraio C (2013) Frequency bands of strongly nonlinear finite homogeneous granular chains. Phys Rev E 88:012206CrossRefGoogle Scholar
  15. 15.
    Nesterenko V (2001) Dynamics of heterogeneous materials. Springer VerlagGoogle Scholar
  16. 16.
    Nesterenko V (1983) Propagation of nonlinear compression pulses in granular media. J Appl Mech Tech Phys 24(5):733–743CrossRefGoogle Scholar
  17. 17.
    Nesterenko V, Lazaridi A (1985) Observation of a new type of solitary waves in a one-dimensional granular medium. J Appl Mech Tech Phys 26(3):405–408CrossRefGoogle Scholar
  18. 18.
    Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Porter MA, Kevrekidis PG, Daraio C (2015) Granular crystals: nonlinear dynamics meets materials engineering. Phys Today 68:44–50CrossRefGoogle Scholar
  20. 20.
    Potekin R, Jayaprakash K, McFarland D, Remick K, Bergman L, Vakakis A (2012) Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer chains. Exp Mech 53(5):861–870CrossRefGoogle Scholar
  21. 21.
    Pozharskiy D, Zhang Y, Williams M, McFarland D, Kevrekidis P, Vakakis A, Kevrekidis I (2015) Nonlinear resonances and antiresonances of a forced sonic vacuum. Phys Rev E 92(6):063203, and arXiv:1507.01025 CrossRefGoogle Scholar
  22. 22.
    Rosas A, Romero AH, Nesterenko VF, Lindenberg K (2007) Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys Rev Lett 98:164301CrossRefGoogle Scholar
  23. 23.
    Sen S, Manciu M, Wright JD (1998) Soliton-like pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys Rev E 57(2):2386–2397CrossRefGoogle Scholar
  24. 24.
    Sen S, Hong J, Bang J, Avalos E, Doney R (2008) Solitary waves in the granular chain. Phys Rep 462(2):21–66MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sinkovits RS, Sen S (1995) Nonlinear dynamics in granular columns. Phys Rev Lett 74(14):2686–2689CrossRefGoogle Scholar
  26. 26.
    Spadoni A, Daraio C (2010) Generation and control of sound bullets with a nonlinear acoustic lens. Proc Natl Acad Sci 107(16):7230–7234CrossRefGoogle Scholar
  27. 27.
    Starosvetsky Y, Vakakis A (2010) Traveling waves and localized modes in one-dimensional homogeneous granular chains with no pre-compression. Phys Rev E 82(2):026603MathSciNetCrossRefGoogle Scholar
  28. 28.
    Strogatz SH (2001) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview PressGoogle Scholar
  29. 29.
    Vergara L (2010) Model for dissipative highly nonlinear waves in dry granular crystals. Phys Rev Lett 104:244302CrossRefGoogle Scholar
  30. 30.
    Wang S, Herbold E, Nesterenko V (2010) Wave propagation in strongly nonlinear two-mass chains. In: Goddard J, Jenkins J, Giovine P (eds) IUTAM Proceedings on granular materials, AIP Conference Proceedings, IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flow, Reggio Calabria, September 14–18, 2009. American Institute of Physics, 1227, Melville, New York, 425–434Google Scholar
  31. 31.
    Yang J, Sutton M (2015) Nonlinear wave propagation in hexagonally packed granular channel under rotational dynamics. Int J Solids Struct. doi: 10.1016/j.ijsolstr.2015.07.017 Google Scholar
  32. 32.
    Zhang Y, Moore K, McFarland D, Vakakis A (2015) Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation. J Appl Phys 118:234901CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  • Y. Zhang
    • 1
  • D. Pozharskiy
    • 2
  • D. M. McFarland
    • 3
  • P. G. Kevrekidis
    • 4
    • 5
  • I. G. Kevrekidis
    • 2
    • 6
  • A. F. Vakakis
    • 1
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Department of Aerospace EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  5. 5.Center for Nonlinear Studies and Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  6. 6.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations