Skip to main content

Advertisement

Log in

Determination of Bone Trabeculae Modulus—An Ultrasonic Scanning and MicroCT (μCT) Imaging Combination Approach

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

To date, there is no method to measure non-destructively the modulus of trabeculae within cancellous bone, whilst retaining its structural integrity. In this study ultrasonic scanning, coupled with microCT imaging, is employed to determine trabeculae modulus along the three major anatomical axes non-destructively. The proposed method allows cancellous bone specimens to remain intact, for possible use in subsequent studies. Volume rendering of the microCT images allows three-dimensional visualization of cancellous bone specimens to be tested. This facilitates trabeculae selection and accurate measurement of distance traveled by the ultrasonic wave, thus yielding a good degree of confidence in the acoustic velocity measured. For all the three principal anatomical directions, the measured acoustic speeds ranged from 2,115 to 3,077 m/s, giving an average of 2,505 m/s. Average wave velocities in the superior–inferior, medial–lateral and anterior–posterior anatomical directions were found to be 2,295, 2,469 and 2,754 m/s, respectively; the differences corresponding to the three directions do not appear to be significant. Subsequently, the modulus was then determined using elastic wave propagation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon, Oxford, England.

    MATH  Google Scholar 

  2. Van Lenthe GH, van Den Bergh JPW, Hermus ARMM, Huiskes R (2001) The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis. J Bone Miner Res 16(3):550–556.

    Article  Google Scholar 

  3. Keaveny TM, Yeh OC (2002) Architecture and trabecular bone—toward an improved understanding of the biomechanical effects of age, sex and osteoporosis. J Musculoskel Neuron Interact 2(3):205–208.

    Google Scholar 

  4. Keaveny TM, Borchers RE, Gibson LJ, Hayes WC (1993) Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J Biomech 26(4/5):599–607.

    Article  Google Scholar 

  5. Odgaard A, Linde F (1991) The underestimation of Young’s modulus in compressive testing of cancellous bone specimens 24(8):391–398.

  6. Linde F, Norgaard P, Hvid I, Odgaard A, Soballe K (1991) Mechanical properties of trabecular bone. Dependency on strain rate. J Biomech 24(8):803–809.

    Article  Google Scholar 

  7. Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21(3):177–181.

    Article  Google Scholar 

  8. Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119.

    Article  Google Scholar 

  9. Nicholson PHF, Cheng XG, Lowet G, Boonen S, Davie MWJ, Dequeker J, Van der Perre G (1997) Structural and material mechanical properties of human vertebral cancellous bone. Medical Eng Phys 19(8):729–737.

    Article  Google Scholar 

  10. Rho JY (1996) An ultrasonic method for measuring the bone. Ultrasonics 24:777–783.

    Article  Google Scholar 

  11. Rho JY, Hobatho MC, Ashman RB (1995) Relations of mechanical properties to density and CT number in human bone. Med Eng Phys 17(5):347–355.

    Article  Google Scholar 

  12. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330.

    Article  Google Scholar 

  13. Parfitt AM (1988) Bone histomorphometry: standardization of nomenclature, symbols and units. Bone 9:67–69.

    Article  Google Scholar 

  14. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2(6):595–610.

    Article  Google Scholar 

  15. Carter DR, Hayes WC (1977) The comprehensive behavior of bone as a two-phase porous structure. J Surg 59(7):954–962.

    Google Scholar 

  16. Njeh CF, Hodgskinson R, Currey JD, Langton CM (1996) Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone. Med Eng Phys 18(5):373–381.

    Article  Google Scholar 

  17. Bumrerraj S, Katz JL (2001) Scanning acoustic microscopy study of human cortical and trabecular bone. Ann Biomed Eng 29:1034–1042.

    Article  Google Scholar 

  18. Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21(3):177–181.

    Article  Google Scholar 

  19. Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R (1999) The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J Biomech 32:673–680.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. M. Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, J.C.M., Teo, E.Y.L., Shim, V.P.W. et al. Determination of Bone Trabeculae Modulus—An Ultrasonic Scanning and MicroCT (μCT) Imaging Combination Approach. Exp Mech 46, 453–461 (2006). https://doi.org/10.1007/s11340-006-8444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-8444-7

Keywords

Navigation