Skip to main content
Log in

Can mat Pilates intervention increase lower limb rate of force development in overweight physically active older women?

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the effect of 12 weeks of mat Pilates intervention (60 min sessions, three times per week) on lower limb rate of force development (RFD) parameters (absolute and relative values and contractile impulse) in physically active and overweight elderly women.

Methods

Fourteen elderly women (age 62 ± 3 years) participated in this study. Workouts were performed in three sets; repetitions increased every 4 weeks, and exercise difficulty increased from beginner to intermediate and advanced levels. Knee extensor and hip extensor–flexor RTD parameters were measured at different time intervals (0–30, 0–50, 0–100, 0–150, 0–200, and 0–250 ms) before (weeks − 4 and 0, control period) and after 6 and 12 weeks of mat Pilates intervention.

Results

No statistical difference (p > 0.05) was observed between weeks − 4 and 0 (control period). However, significant increments were observed after week 12 for most time intervals for absolute and relative knee extensor and hip extensor–flexor RFD, as well as for contractile impulse for the same muscle groups.

Conclusions

We conclude that the mat Pilates causes significant increments in knee extensor and hip extensor–flexor RFD and contractile impulse using an incremental structure of training in physically active elderly women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yu F, Hedström M, Cristea A et al (2007) Effects of ageing and gender on contractile properties in human skeletal muscle and single fibres. Acta Physiol 190:229–241. https://doi.org/10.1111/j.1748-1716.2007.01699.x

    Article  CAS  Google Scholar 

  2. Mitchell WK, Williams J, Atherton P et al (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:1–18. https://doi.org/10.3389/fphys.2012.00260

    Article  Google Scholar 

  3. Narici MV, Maffulli N, Maganaris CN (2008) Ageing of human muscles and tendons. Disabil Rehabil 30:1548–1554. https://doi.org/10.1080/09638280701831058

    Article  PubMed  Google Scholar 

  4. Narici MV, Maganaris CN, Reeves ND, Capodaglio P (2003) Effect of aging on human muscle architecture. J Appl Physiol 95:2229–2234. https://doi.org/10.1152/japplphysiol.00433.2003

    Article  CAS  PubMed  Google Scholar 

  5. Newman AB, Lee JS, Visser M et al (2005) Weight change and the conservation of lean mass in old age: the health, aging and body composition study. Am J Clin Nutr 82:872–878. https://doi.org/10.1093/ajcn/82.4.872

    Article  CAS  PubMed  Google Scholar 

  6. Kuk JL, Saunders TJ, Davidson LE, Ross R (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8:339–348. https://doi.org/10.1016/J.ARR.2009.06.001

    Article  PubMed  Google Scholar 

  7. Santanasto AJ, Glynn NW, Newman MA et al (2011) Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial. J Obes. https://doi.org/10.1155/2011/516576

    Article  PubMed  Google Scholar 

  8. LaRoche DP, Cremin KA, Greenleaf B, Croce RV (2010) Rapid torque development in older female fallers and nonfallers: a comparison across lower-extremity muscles. J Electromyogr Kinesiol 20:482–488. https://doi.org/10.1016/J.JELEKIN.2009.08.004

    Article  PubMed  Google Scholar 

  9. Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727. https://doi.org/10.1152/japplphysiol.00347.2003

    Article  CAS  PubMed  Google Scholar 

  10. Thompson BJ, Ryan ED, Herda TJ et al (2014) Age-related changes in the rate of muscle activation and rapid force characteristics. Age (Dordr) 36:839–849. https://doi.org/10.1007/s11357-013-9605-0

    Article  Google Scholar 

  11. Aagaard P, Simonsen EB, Andersen JL et al (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326. https://doi.org/10.1152/japplphysiol.00283.2002

    Article  PubMed  Google Scholar 

  12. Caserotti P, Aagaard P, Larsen JB, Puggaard L (2008) Explosive heavy-resistance training in old and very old adults: changes in rapid muscle force, strength and power. Scand J Med Sci Sports 18:773–782. https://doi.org/10.1111/j.1600-0838.2007.00732.x

    Article  CAS  PubMed  Google Scholar 

  13. Barboza BHV, Gurjão ALD, Jambassi Filho JC et al (2008) Age-related decline on rate of force development and the effect of resistance training in older women. Acta Fisiátrica 16:4–9

    Google Scholar 

  14. Moura BM de, Sakugawa RL, Orssatto LBR da et al (2017) Functional capacity improves in-line with neuromuscular performance after 12 weeks of non-linear periodization strength training in the elderly. Aging Clin Exp Res 1–10. https://doi.org/10.1007/s40520-017-0873-x

  15. Tiggemann CL, Dias CP, Radaelli R et al (2016) Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance. Age (Dordr) 38:42. https://doi.org/10.1007/s11357-016-9904-3

    Article  CAS  Google Scholar 

  16. Blazevich AJ, Horne S, Cannavan D et al (2008) Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps. Muscle Nerv 38:1133–1146. https://doi.org/10.1002/mus.21021

    Article  Google Scholar 

  17. Souza MS, Vieira BC, C (2006) Who are the people looking for the Pilates method? J Bodyw Mov Ther 10:328–334. https://doi.org/10.1016/J.JBMT.2005.10.005

    Article  Google Scholar 

  18. Wells C, Kolt GS, Bialocerkowski A (2012) Defining Pilates exercise: a systematic review. Complement Ther Med 20:253–262. https://doi.org/10.1016/j.ctim.2012.02.005

    Article  PubMed  Google Scholar 

  19. Oliveira LC, Oliveira RG, Pires-Oliveira DAA (2016) Comparison between static stretching and the Pilates method on the flexibility of older women. J Bodyw Mov Ther 1–7. https://doi.org/10.1016/j.jbmt.2016.01.008

  20. Rogers K, Gibson AL (2009) Eight-week traditional mat Pilates training-program effects on adult fitness characteristics. Res Q Exerc Sport 80:569–574

    Article  PubMed  Google Scholar 

  21. Oliveira LC, Pires-Oliveira DAA, Abucarub AC, Oliveira RG De et al (2017) Pilates increases isokinetic muscular strength of the elbow flexor and extensor muscles of older women: a randomized controlled clinical trial. J Bodyw Mov Ther 21:2–10. https://doi.org/10.1016/j.jbmt.2016.03.002

    Article  PubMed  Google Scholar 

  22. Bertoli J, Dal Pupo J, Vaz MA et al (2018) Effects of mat Pilates on hip and knee isokinetic torque parameters in elderly women. J Bodyw Mov Ther 22:798–804. https://doi.org/10.1016/J.JBMT.2017.08.006

    Article  PubMed  Google Scholar 

  23. Kloubec J (2011) Pilates: how does it work and who needs it? Muscles Ligament Tendons J 1:61–66

    Google Scholar 

  24. Aagaard P (2003) Training-induced changes in neural function. Exerc Sport Sci Rev 31:61–67

    Article  PubMed  Google Scholar 

  25. Higbie EJ, Cureton KJ, Warren GL, Prior BM (1996) Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol 81:2173–2181. https://doi.org/10.1152/jappl.1996.81.5.2173

    Article  CAS  PubMed  Google Scholar 

  26. Avelar BP, Costa JNA de, Safons MP et al (2016) Balance exercises circuit improves muscle strength, balance, and functional performance in older women. Age (Dordr) 38:14. https://doi.org/10.1007/s11357-016-9872-7

    Article  Google Scholar 

  27. Dvir Z (2002) Isokinetic of the hip muscles. In: Isokinetics: muscle testing, interpretation, and clinical applications, pp 91–100

  28. Neumann D (2010) Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther 40:82–94. https://doi.org/10.2519/jospt.2010.3025

    Article  PubMed  Google Scholar 

  29. Skelton DA, Greig CA, Davies JM, Young A (1994) Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 23:371–377

    Article  CAS  PubMed  Google Scholar 

  30. Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  CAS  Google Scholar 

  31. Brucki SMD, Nitrini R, Caramelli P et al (2003) Sugestões para o uso do mini-exame do estado mental no Brasil. Arq Neuropsiquiatr 61:777–781. https://doi.org/10.1590/S0004-282X2003000500014

    Article  PubMed  Google Scholar 

  32. Folstein MF, Robins LN, Helzer JE (1983) The mini-mental state examination. Arch Gen Psychiatry 40:812. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  33. Yesavage JA, Sheikh JI (1986) 9/ Geriatric Depression Scale (GDS) sigeriatric depression recent evidence and development of a shorter version. Clin Gerontol ISSN 5:165–173. https://doi.org/10.1300/J018v05n01

    Article  Google Scholar 

  34. Häkkinen K, Newton RU, Gordon SE et al (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci 53:415–423

    Article  Google Scholar 

  35. Häkkinen K, Kallinen M, Izquierdo M et al (1998) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 84:1341–1349

    Article  PubMed  Google Scholar 

  36. Latey P (2002) Updating the principles of the Pilates method—part 2. J Bodyw Mov Ther 6:94–101. https://doi.org/10.1054/jbmt.2002.0289

    Article  Google Scholar 

  37. Walker S, Peltonen H, Sautel J et al (2014) Neuromuscular adaptations to constant vs. variable resistance training in older men. Int J Sports Med 35:69–74. https://doi.org/10.1055/s-0033-1343404

    Article  CAS  PubMed  Google Scholar 

  38. Maffiuletti NA, Aagaard P, Blazevich AJ et al (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116:1091–1116. https://doi.org/10.1007/s00421-016-3346-6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, New York

    Google Scholar 

  40. Thompson BJ, Ryan ED, Sobolewski EJ et al (2013) Age related differences in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-aged and old men. Exp Gerontol 48:277–282. https://doi.org/10.1016/j.exger.2012.10.009

    Article  PubMed  Google Scholar 

  41. Izquierdo M, Aguado X, Gonzalez R et al (1999) Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol 79:260–267. https://doi.org/10.1007/s004210050504

    Article  CAS  PubMed  Google Scholar 

  42. Bellumori M, Jaric S, Knight CA (2013) Age-related decline in the rate of force development scaling factor. Mot Control 17:370–381

    Article  Google Scholar 

  43. Klass M, Baudry S, Duchateau J (2008) Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol 104:739–746. https://doi.org/10.1152/japplphysiol.00550.2007

    Article  PubMed  Google Scholar 

  44. Thelen DG, Muriuki M, James J et al (2000) Muscle activities used by young and old adults when stepping to regain balance during a forward fall. J Electromyogr Kinesiol 10:93–101

    Article  CAS  PubMed  Google Scholar 

  45. Reinders I, Murphy RA, Koster A et al (2015) Muscle quality and muscle fat infiltration in relation to incident mobility disability and gait speed decline: the age, gene/environment susceptibility-Reykjavik study. J Gerontol A Biol Sci Med Sci 70:1030–1036. https://doi.org/10.1093/gerona/glv016

    Article  PubMed  PubMed Central  Google Scholar 

  46. LaRoche DP, Kralian RJ, Millett ED (2011) Fat mass limits lower-extremity relative strength and maximal walking performance in older women. J Electromyogr Kinesiol 21:754–761. https://doi.org/10.1016/j.jelekin.2011.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  47. Folland JP, Buckthorpe MW, Hannah R (2014) Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports 24:894–906. https://doi.org/10.1111/sms.12131

    Article  CAS  PubMed  Google Scholar 

  48. Bassey EJ, Fiatarone MA, O’Neill EF et al (1992) Leg extensor power and functional performance in very old men and women. Clin Sci 82:321–327

    Article  CAS  PubMed  Google Scholar 

  49. Andersen LL, Aagaard P (2006) Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol 96:46–52. https://doi.org/10.1007/s00421-005-0070-z

    Article  PubMed  Google Scholar 

  50. D’Antona G (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552:499–511. https://doi.org/10.1113/jphysiol.2003.046276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Foldvari M, Clark M, Laviolette LC et al (2000) Association of muscle power with functional status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci 55:M192–M199

    Article  CAS  PubMed  Google Scholar 

  52. Behm DG, Drinkwater EJ, Willardson JM, Cowley PM (2010) The use of instability to train the core musculature. Appl Physiol Nutr Metab 35:91–108. https://doi.org/10.1139/H09-127

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the study participants, CAPES for the scholarship for JB, and CNPq for the fellowship for FD and MAV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefina Bertoli.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no conflict of interest.

Ethical approval

The local Human Research Ethics Committee approved the study (Protocol No. 44972915.9.0000.0110), procedures were conducted in accordance with the Declaration of Helsinki, and the participants signed an informed consent form.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1705 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoli, J., Diefenthaeler, F., Detanico, D. et al. Can mat Pilates intervention increase lower limb rate of force development in overweight physically active older women?. Sport Sci Health 15, 407–415 (2019). https://doi.org/10.1007/s11332-019-00533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-019-00533-5

Keywords

Navigation