Skip to main content

Advertisement

Log in

Long-term effects of sprint interval training on expression of cardiac genes involved in energy efficiency

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The real mechanisms of intensive exercise training-induced energy efficiency have not yet been well examined. Therefore, the aim of the present study was to investigate the effects of sprint interval training (SIT) on gene expression of uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS).

Methods

For this purpose, 16 Albino Wistar rats (250–300 g) were randomly divided into equal groups of control and sprint training. The animals run on treadmill for 10 weeks, 5 days per week at intensity corresponding to 90–95% maximal oxygen consumption. The gene expression of UCP2, UCP3 and eNOS was analyzed by RT-PCR method in hearts. The data were analyzed by independent samples T test at P < 0.05 level.

Results

Sprint interval training significantly decreased mRNA expression of UCP2 (t14 = 4.818, P = 0.001) and UCP3 (t14 = 4.620, P = 0.001) in cardiac muscle of rats. In contrast, mRNA expression of eNOS in cardiac muscle significantly increased following sprint interval training (t14 = 7.967, P = 0.001).

Conclusion

This study elucidates that SIT through reduction in gene expression of uncoupling proteins can improve energy efficiency. But, more studies are needed to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

C:

Control

eNOS:

Endothelial nitric oxide synthase

SIT:

Sprint interval training

UCPs:

Uncoupling proteins

VO2max:

Maximal oxygen uptake

References

  1. Fernström M, Tonkonogi M, Sahlin K (2004) Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 554(3):755–763

    Article  CAS  PubMed  Google Scholar 

  2. Rolfe DF, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol Cell Physiol 271(4):C1380–C1389

    Article  CAS  Google Scholar 

  3. Fallahi AA, Shekarfroush S, Rahimi M, Jalali A, Khoshbaten A (2016) Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency. Iran J Basic Med Sci 19(3):258

    PubMed  PubMed Central  Google Scholar 

  4. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415(6867):96–99

    Article  CAS  Google Scholar 

  5. Sun X, Wray C, Tian X, Hasselgren PO, Lu J (2003) Expression of uncoupling protein 3 is upregulated in skeletal muscle during sepsis. Am J Physiol Endocrinol Metab 285(3):E512–E520

    Article  CAS  PubMed  Google Scholar 

  6. Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, Wen L, Liu S, Ji LL, Zhang Y (2008) Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Biol Med 44(7):1373–1381

    Article  CAS  PubMed  Google Scholar 

  7. Dhamrait SS, Williams AG, Day SH, Skipworth J, Payne JR, Humphries SE, Montgomery HE (2012) Variation in the uncoupling protein 2 and 3 genes and human performance. J Appl Physiol 112(7):1122–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tonkonogi M, Krook A, Walsh B, Sahlin K (2000) Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect? Biochem J 351(3):805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schrauwen P, Hesselink M (2003) Uncoupling protein 3 and physical activity: the role of uncoupling protein 3 in energy metabolism revisited. Proc Nutr Soc 62(3):635–643

    Article  CAS  PubMed  Google Scholar 

  10. Schrauwen P, Troost FJ, Xia J, Ravussin E, Saris WH (1999) Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects. Int J Obes 23(9):966–972

    Article  CAS  Google Scholar 

  11. Luo S, Lei H, Qin H, Xia Y (2014) Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des 20(22):3548–3553

    Article  CAS  PubMed  Google Scholar 

  12. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89(2)(1):481–534

    Article  CAS  PubMed  Google Scholar 

  13. Lee-Young RS, Ayala JE, Hunley CF, James FD, Bracy DP, Kang L, Wasserman DH (2010) Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am J Physiol Regul Integr Comp Physiol 298(5):R1399–R1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, Obert P, Cazorla O, Tanguy S, Reboul C (2013) Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol 108(6):389

    Article  CAS  PubMed  Google Scholar 

  15. Boss O, Samec S, Desplanches D, Mayet MH, Seydoux J, Muzzin P, Giacobino JP (1998) Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. FASEB J 12(3):335–339

    Article  CAS  PubMed  Google Scholar 

  16. Russell AP1, Somm E, Praz M, Crettenand A, Hartley O, Melotti A, Giacobino JP, Muzzin P, Gobelet C, Dériaz O (2003) UCP3 protein regulation in human skeletal muscle fibre types I, IIa and IIx is dependent on exercise intensity. J Physiol 550(Pt 3):855–861 (Epub 2003 Jun 6)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hjeltnes N, Fernström M, Zierath JR, Krook A (1999) Regulation of UCP2 and UCP3 by muscle disuse and physical activity in tetraplegic subjects. Diabetologia 42(7):826–830

    Article  CAS  PubMed  Google Scholar 

  18. Liu WY, He W, Li H (2013) Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/Bax ratio in rat skeletal muscle. Oxid Med Cell Longev 780719:1–7

    Google Scholar 

  19. Jones TE, Baar K, Ojuka E, Chen M, Holloszy JO (2003) Exercise induces an increase in muscle UCP3 as a component of the increase in mitochondrial biogenesis. Am J Physiol Endocrinol Metab 284(1):E96–E101

    Article  CAS  PubMed  Google Scholar 

  20. Ascensão A, Magalhães J, Soares JM, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2006) Endurance training limits the functional alterations of heart rat mitochondria submitted to in vitro anoxia-reoxygenation. Int J Cardiol 109(2):169–178

    Article  PubMed  Google Scholar 

  21. Fenning A, Harrison G, Dwyer D, Rose’Meyer R, Brown L (2003) Cardiac adaptation to endurance exercise in rats. Mol Cell Biochem 251(1):51–59

    CAS  PubMed  Google Scholar 

  22. TaheriChadorneshin H, Cheragh-Birjandi S, Ramezani S, Abtahi-Eivary SH (2017) Comparing sprint and endurance training on anxiety, depression and its relation with brain-derived neurotrophic factor in rats. Behav Brain Res 329:1–5

    Article  CAS  PubMed  Google Scholar 

  23. Young CG, Knight CA, Vickers KC, Westbrook D, Madamanchi NR, Runge MS, Ischiropoulos H, Ballinger SW (2005) Differential effects of exercise on aortic mitochondria. Am J Physiol Heart Circ Physiol 288(4):H1683–H1689

    Article  CAS  PubMed  Google Scholar 

  24. Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C (2005) Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 289(6):R1564–R1572

    Article  CAS  PubMed  Google Scholar 

  25. Kim DH, Kim SH, Kim WH, Moon CR (2013 Dec) The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. J Exer Nutr Biochem 17(4):199

    Article  Google Scholar 

  26. Oh KS, Kim EY, Yoon M, Lee CM (2007) Swim training improves leptin receptor deficiency-induced obesity and lipid disorder by activating uncoupling proteins. Exp Mol Med 39(3):385

    Article  CAS  PubMed  Google Scholar 

  27. Yang L, Jia Z, Zhu M, Zhang J, Liu J, Wu P et al (2014) Exercise protects against chronic beta-adrenergic remodeling of the heart by activation of endothelial nitric oxide synthase. PLoS One 9:e96892

    Article  PubMed  PubMed Central  Google Scholar 

  28. Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, Sindler A, Gundewar S, Seals DR, Barouch LA, Lefer DJ (2011) Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108:1448–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holloway TM, Bloemberg D, da Silva ML, Simpson JA, Quadrilatero J, Spriet LL (2015) High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PLoS One 10:e0121138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma ZY, Zhao YC (2014) Effects of aerobic exercise training on antihypertension and expressions of VEGF, eNOS of skeletal muscle in spontaneous hypertensive rats. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chin J Appl Physiol 30(4):320–324

    CAS  Google Scholar 

  31. Derdak Z, Garcia TA, Baffy G (2009) Detection of uncoupling protein-2 (UCP2) as a mitochondrial modulator of apoptosis, 2nd edn. In: Erhardt P, Toth A (eds) Apoptosis: methods and protocols, vol 559. Humana Press. Totowa, NJ, pp 205–217

    Chapter  Google Scholar 

  32. French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK (2008) Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J 22(8):2862–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lennon SL, Quindry JC, Hamilton KL, French JP, Hughes J, Mehta JL, Powers SK (2004) Elevated MnSOD is not required for exercise-induced cardioprotection against myocardial stunning. Am J Physiol Heart Circ Physiol 287(2):H975–H980

    Article  CAS  PubMed  Google Scholar 

  34. Lawler JM, Kwak HB, Kim JH, Suk MH (2009) Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats. Am J Physiol Regul Integr Comp Physiol 296(5):R1496–R1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corte de Araujo AC, Roschel H, Picanco AR, do Prado DM, Villares SM, de Sa Pinto AL et al (2012) Similar health benefits of endurance and high-intensity interval training in obese children. PloS One 7(8):42747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the animal laboratory at Baqiyatallah University of Medical Sciences for their valuable assistance with us in carrying out the exercise protocols and animal surgery.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shirvani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All methods performed in the study were in accordance with ethical standards of the national research committee and with the 1964 Helsinki Declaration.

Informed consent

There is no informed consent for this study since the study was not conducted on humans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TaheriChadorneshin, H., Rostamkhani, F. & Shirvani, H. Long-term effects of sprint interval training on expression of cardiac genes involved in energy efficiency. Sport Sci Health 15, 59–63 (2019). https://doi.org/10.1007/s11332-018-0480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-018-0480-z

Keyword

Navigation