Skip to main content

Advertisement

Log in

12-week treadmill exercise program elicits lower energy availability without changes in serum testosterone in male rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate whether a treadmill endurance exercise program would reduce serum testosterone and leptin in male rats and assess the impact of increased dietary cholesterol on serum hormones.

Methods

Male Sprague-Dawley Rats (n = 20) were randomly assigned to a control group (C) or an exercise training group (EX) that performed treadmill running 40 min/day, 6 days/week for 12 weeks. At study midpoint (week 6), rats were randomized to a high-cholesterol (HC) diet (n = 10) or remain on standard semi-purified (LC) diet (n = 10).

Results

Results are presented as median [IQR]. At end of week 6, EX + LC had significantly lower body weight (508 [460–527] vs 570 [516–606] g; p = 0.01), mean daily energy intake (76.3 [74.9–82.2] vs 90.9 [86.9–94.5] kcal; p < 0.01), and serum leptin (0.4 [0.3–0.6] vs 3.3 [2.0–4.0] ng/mL; p < 0.01) in comparison to C + LC. No difference was observed between EX + LC and C + LC in serum testosterone (12.6 [6.9–18.3] vs 11.7 [7.6–18.9] ng/mL). At end of week 12, EX + LC had significantly lower body weight (514 [483–568] g) compared to C + LC (644 [575–680] g; p < 0.01) and C + HC (650 [583–702] g; p < 0.01). Serum Leptin in both EX + LC (0.6 [0.2–0.8] ng/mL) and EX + HC (0.6 [0.3–1.6] ng/mL) was significantly lower than C + LC (3.0 [2.2–4.2] ng/mL; p < 0.01). No significant difference in testosterone was observed between C + LC and C + HC (4.3 [3.3–8.3] vs 6.3 [3.2–9.3] ng/mL, respectively).

Conclusions

Despite lower energy availability, exercise-induced changes in sex hormones may not occur in training programs ≤ 12 weeks. Lower voluntary energy intake observed in exercise groups despite greater energy expenditure may indicate that lower energy availability in endurance-trained individuals may be inadvertent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kyriakidis M, Caetano L, Anastasiadou N, Karasu T, Lashen H (2016) Functional hypothalamic amenorrhea: leptin treatment, dietary intervention and counselling as alternative to traditional practice—systematic review. Eur J Obstet Gynecol Reprod Biol 198:131–137

    Article  CAS  Google Scholar 

  2. Chou SH, Chamberland JP, Liu X, Matarese G, Gao C, Stefanakis R, Brinkoetter MT (2011) Leptin is an effective treatment for hypothalamic amenorrhea. Proc Natl Acad Sci 108(16):6585–6590

    Article  CAS  Google Scholar 

  3. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Goolsby M, Matheson G (2014) 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad. Br J Sports Med 48:1–20

    Article  Google Scholar 

  4. De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI (2008) The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone 43:140–148

    Article  Google Scholar 

  5. Mallinson RJ, Williams NI, Hill BR, De Souza MJ (2013) Body composition and reproductive function exert unique influences on indices of bone health in exercising women. Bone 56:91–100

    Article  Google Scholar 

  6. Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, Hirschberg AL (2005) Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab 90(3):1354–1359

    Article  CAS  Google Scholar 

  7. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, Nattiv A (2014) Higher incidence of bone stress injury with increasing female athlete triad risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med 42:949–958

    Article  Google Scholar 

  8. Nattiv A, Kennedy G, Barrack MT, Abdelkerim A, Goolsby MA, Arends JC, Seeger LL (2013) Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med 41:1930–1941

    Article  Google Scholar 

  9. Hackney AC, Moore AW, Brownlee KK (2005) Testosterone and endurance exercise: development of the “exercise-hypogonadal male condition”. Acta Physiol Hung 92:121–137

    Article  CAS  Google Scholar 

  10. Hackney AC (2008) Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest 31:932–938

    Article  CAS  Google Scholar 

  11. Lane AR, Hackney AC (2014) Reproductive dysfunction from the stress of exercise training is not gender specific: the “Exercise-Hypogonadal Male Condition”. J Endocrinol Diab 1(2):1–4

    Google Scholar 

  12. Hackney AC, Szczepanowska E, Viru AM (2003) Basal testicular testosterone production in endurance-trained men is suppressed. Eur J Appl Physiol 89:198–201

    Article  CAS  Google Scholar 

  13. Ayers JWT, Komesu V, Romani T, Ansbacher R (1985) Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil Steril 43(6):917–921

    Article  CAS  Google Scholar 

  14. Wheeler GD, Wall SR, Belcastro AN, Cumming DC (1984) Reduced serum testosterone and prolactin levels in male distance runners. JAMA 252(4):514–516

    Article  CAS  Google Scholar 

  15. Hackney AC, Dolny DG, Ness RJ (1988) Comparison of resting reproductive hormonal profiles in select athletic groups. Biol Sport 4(5):297–304

    Google Scholar 

  16. Gulledge TP, Hackeny AC (1996) Reproducibility of low testosterone concentrations in endurance trained men. Eur J Appl Physiol Occup Physiol 73(6):582–583

    Article  CAS  Google Scholar 

  17. Hackney AC, Sinning WE, Bruot BC (1988) Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 20(1):60–65

    Article  CAS  Google Scholar 

  18. Hackney AC, Fahrner CI, Gulledge TP (1998) Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness 38(2):138–141

    CAS  PubMed  Google Scholar 

  19. Hooper DR, Kraemer WJ, Saenz C, Schill KE, Focht BC, Volek JS, Maresh CM (2017) The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur J Appl Physiol 117:1349–1357

    Article  CAS  Google Scholar 

  20. MacKelvie KJ, Taunton JE, McKay HA, Khan KM (2000) Bone mineral density and serum testosterone in chronically trained, high mileage 40–55 year old male runners. Br J Sports Med 34:273–278

    Article  CAS  Google Scholar 

  21. MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ (1986) Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 315(7):411–417

    Article  CAS  Google Scholar 

  22. Schaal K, Van Loan MD, Casazza GA (2011) Reduced catecholamine response to exercise in amenorrheic athletes. Med Sci Sports Exerc 43(1):34–43

    Article  CAS  Google Scholar 

  23. Herbst KL, Bhasin S (2004) Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 7(3):271–277

    Article  CAS  Google Scholar 

  24. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocinol Metab 82(8):2386–2390

    Article  CAS  Google Scholar 

  25. Bhasin S, Cunningham GC, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM (2010) Testosterone therapy in adult men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95(6):2536–2559

    Article  CAS  Google Scholar 

  26. Kemmler W, Engelke K, Baumann H, Beeskow C, von Stengel S, Weineck J, Kalender WA (2006) Bone status in elite male runners. Eur J Appl Physiol 96:78–85

    Article  Google Scholar 

  27. Stewart AD, Hannan J (2000) Total and regional bone density in male runners, cyclists, and controls. Med Sci Sports Exerc 32:1373–1377

    Article  CAS  Google Scholar 

  28. Michel BA, Lane NE, Bjorkengren A, Bloch DA, Fries JF (1992) Impact of running on lumbar bone density: a 5-year longitudinal study. J Rheumatol 19:1759–1763

    CAS  PubMed  Google Scholar 

  29. MacDougall JD, Webber CE, Martin J, Ormerod S, Chesley A, Younglai EV, Gordon CL, Blimkie CJ (1992) Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol 73(3):1165–1170

    Article  CAS  Google Scholar 

  30. Hetland ML, Haarbo J, Christiansen C (1993) Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 77:770–775

    CAS  PubMed  Google Scholar 

  31. Bilanin JE, Blanchard MS, Russek-Cohen E (1989) Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 21:66–70

    Article  CAS  Google Scholar 

  32. Hind K, Truscott JG, Evans JA (2006) Low lumbar spine bone mineral density in both male and female endurance runners. Bone 39(4):880–885

    Article  CAS  Google Scholar 

  33. Lieberman M, Marks AD, Peet A (2013) Intestinal absorption of cholesterol. In: Lieberman M, Marks AD (eds) Marks’ basic medical biochemistry, 4th edn. Lippincott Williams & Wilkins, electronic copy

  34. Cholesterol Homeostasis (2007) Biofiles for life science research. Sigma Life Sci 2(7):1–20

    Google Scholar 

  35. Lieberman M, Marks AD, Peet A (2013) Cholesterol synthesis. In: Lieberman M, Marks AD (eds) Marks’ basic medical biochemistry, 4th edn. Lippincott Williams & Wilkins, electronic copy

  36. Li L, Xiao N, Yang X, Gao J, Ding J, Wang T, Hu G (2012) A high cholesterol diet ameliorates hippocampus-related cognitive and pathological deficits in ovariectomized mice. Behav Brain Res 230:251–258

    Article  CAS  Google Scholar 

  37. Peyghan R, Gooraninejad S, Shahriari A, Jamshidi Z (2012) Feeding effect of cholesterol in the diet on sex hormones concentrations and the gonads’ growth of yearling common carp (Cyprinus carpio). IJVM 6(1):23–28

    CAS  Google Scholar 

  38. Mantzoros CS (2000) Role of leptin in reproduction. Ann N Y Acad Sci 900:174–183

    Article  CAS  Google Scholar 

  39. Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ (2014) Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 203:146–157

    Article  CAS  Google Scholar 

  40. Saladin R, de Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, Auwerx J (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature 377(6549):527

    Article  CAS  Google Scholar 

  41. Bjorbaek C, Kahn BB (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 59:305–332

    Article  CAS  Google Scholar 

  42. Arora S (2008) Leptin and its metabolic interactions – an update. Diabetes Obes Metab 10(11):973–993

    Article  Google Scholar 

  43. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23(4):775–786

    Article  CAS  Google Scholar 

  44. Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, Cone RD (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  CAS  Google Scholar 

  45. Elmquist JK (2001) Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav 74(4):703–708

    Article  CAS  Google Scholar 

  46. Ahima RS (2006) Adipose tissue as an endocrine organ. Obesity 14(S8):242S–249S

    Article  CAS  Google Scholar 

  47. Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE (2006) Brain adipocytokine action and metabolic regulation. Diabetes 55(Suppl 2):S145–S154

    Article  CAS  Google Scholar 

  48. Zhao SP, Wu ZH (2005) Atorvastatin reduces serum leptin concentration in hypercholesterolemic rabbits. Clin Chim Acta 360(1–2):133–140

    Article  CAS  Google Scholar 

  49. Huang Q, He B, Yang F, Zeng H, Zhao Q (2012) Effect of high-cholesterol diet on serum leptin and blood lipid in rabbits. J Anim and Vet Adv 11:1719–1721

    Article  Google Scholar 

  50. Zhao C, Liu X, Hong R, Li H, Li R, Wang R (2014) Effects of carbohydrate supplements on exercise-induced menstrual dysfunction and ovarian subcellular structural changes in rats. J Sport Health Sci 3:189–195

    Article  Google Scholar 

  51. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV (1979) Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol Respir Environ Exerc Physiol 47:1278–1283

    CAS  PubMed  Google Scholar 

  52. McColl EM, Wheeler GD, Gomes P, Bhambhani Y, Cumming DC (1989) The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol 31:617–621

    Article  CAS  Google Scholar 

  53. Guglielmini C, Paolini AR, Conconi F (1984) Variations of serum testosterone concentrations after physical exercise of different duration. Int J Sports Med 5:246–249

    Article  CAS  Google Scholar 

  54. Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD (1992) Growth hormone, IGF-1, and testosterone responses to resistive exercises. Med Sci Sports Exerc 24:1346–1352

    Article  CAS  Google Scholar 

  55. Gray AB, Telford RD, Weidemann MJ (1993) Endocrine response to intense interval exercise. Eur J Appl Physiol 66:366–371

    Article  CAS  Google Scholar 

  56. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV (1988) Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 65:2406–2412

    Article  CAS  Google Scholar 

  57. Cadoux-Hudson TA, Few JD, Imms FJ (1985) The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol 54:321–325

    Article  CAS  Google Scholar 

  58. Tanaka H, Cleroux J, de Champlain J, Ducharme JR, Collu R (1986) Persistent effects of a marathon run on the pituitary testicular axis. J of Endocrinol Invest 9:97–101

    Article  CAS  Google Scholar 

  59. DeSouza MJ, Miller BE (1997) The effect of endurance training on reproductive function in male runners: a ‘volume threshold’ hypothesis. Sports Med 23(6):357–374

    Article  CAS  Google Scholar 

  60. DeSouza MJ, Arce JC, Pescatello LS, Scherzer HS, Luciano AA (1994) Gonadal hormones and semen quality in male runners: a volume threshold effect of endurance training. Int J Sports Med 15(7):383–391

    Article  CAS  Google Scholar 

  61. Loucks AB, Thuma JR (2003) Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 88:297–311

    Article  CAS  Google Scholar 

  62. Loucks AB, Kiens B, Wright HH (2011) Energy availability in athletes. J Sports Sci 29(1 Suppl):S7–S15

    Article  Google Scholar 

  63. Martinez-Martos JM, Arrazola M, Mayas MD, Carrera-Conzalez MP, Garcia MJ, Ramirez-Exposito MJ (2011) Diet-induced hypercholesterolemia impaired testicular steroidogenesis in mice through the renin–angiotensin system. Gen Comp Endocrinol 173(1):15–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Amy Finneral for her technical help with the animal facility.

Funding

This project was supported by a grant from the American Egg Board, Egg Nutrition Center, Washington, DC (T.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Wilson.

Ethics declarations

Conflict of interest

None of the authors declare competing financial interests.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee. All procedures were approved by the university animal research committee (IACUC).

Informed consent

There is no informed consent for this study since the study was conducted on animals and not humans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, L.R., Dellogono, M.J., Chenette, E.E. et al. 12-week treadmill exercise program elicits lower energy availability without changes in serum testosterone in male rats. Sport Sci Health 14, 537–545 (2018). https://doi.org/10.1007/s11332-018-0455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-018-0455-0

Keywords

Navigation