Skip to main content
Log in

Acute effects of lower and upper body-resistance training on arterial stiffness, peripheral, and central blood pressure in young normotensive women

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose The aim of the study was to investigate the acute effects of an upper body-resistance training (UBR) and lower body-resistance training (LBR) on arterial stiffness (AS) and peripheral and central blood pressure (BP) of young recreationally active and normotensive women.

Methods

20 young women were separated into an UBR group (n = 10) and an LBR group (n = 10) performing four exercises of three sets and 12 repetitions with 70% of the One-repetition maximum. At rest (pre), as well as 1 (post1′), 10 (post10′), and 60 (post60′) min after the respective training, heart rate (HR), peripheral (pSysBP; pDiaBP), central blood pressure (cSysBP; cDiaBP), and aortic pulse wave velocity (PWV) were measured.

Results

Resting values revealed no differences between the groups in any parameter. After the exercise HR increased in both groups, pSysBP increased after LBR and cSysBP increased after UBR at timepoint post1′. PWV did not show any significant differences between the groups and between any timepoints. pDiaBP and cDiaBP values were higher in the LBR group compared to the UBR group at post1′. All values reached pre values at post60′ in both groups.

Conclusions

The adaptation pattern of the measured PWV as a measure of AS and BP parameters in UBR compared to LBR is similar, and all parameters regulate to their baseline values within 1 h. Therefore, no unfavorable acute effects of UBR or LBR are observed and, hence, can be recommended for this study population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. ESH/ESC Task Force for the Managment of Arterial Hypertension (2013) Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 31(10):1925–1938. https://doi.org/10.1097/hjh.0b013e328364ca4c

    Article  Google Scholar 

  2. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB (2014) Central blood pressure: current evidence and clinical importance. Eur Heart J 35(26):1719–1725. https://doi.org/10.1093/eurheartj/eht565

    Article  PubMed  PubMed Central  Google Scholar 

  3. Karras A, Haymann J-P, Bozec E, Metzger M, Jacquot C, Maruani G, Houillier P, Froissart M, Stengel B, Guardiola P, Laurent S, Boutouyrie P, Briet M (2012) Large artery stiffening and remodeling are independently associated with all-cause mortality and cardiovascular events in chronic kidney disease. Hypertension 60(6):1451–1457. https://doi.org/10.1161/hypertensionaha.112.197210

    Article  PubMed  CAS  Google Scholar 

  4. Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC (2014) Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One 9(10):e110034. https://doi.org/10.1371/journal.pone.0110034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Braith RW, Stewart KJ (2006) Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 113(22):2642–2650. https://doi.org/10.1161/circulationaha.105.584060

    Article  PubMed  Google Scholar 

  6. Miyachi M, Donato AJ, Yamamoto K, Takahashi K, Gates PE, Moreau KL, Tanaka H (2003) Greater age-related reductions in central arterial compliance in resistance-trained men. Hypertension 41(1):130–135

    Article  PubMed  CAS  Google Scholar 

  7. Bertovic DA, Waddell TK, Gatzka CD, Cameron JC, Dart AM, Kingwell BA (1999) Muscular strength training is associated with low arterial compliance and high pulse pressure. Hypertension 33(6):1385–1391. https://doi.org/10.1161/01.hyp.33.6.1385

    Article  PubMed  CAS  Google Scholar 

  8. Saka T, Sekir U, Dogan A, Akkurt S, Karakus M, Celebi MM, Sarli B, Oguzhan A (2016) P-16 arterial stiffness differences between aerobically and resistance trained turkish elite athletes. Br J Sports Med 50(Suppl 1):A40. https://doi.org/10.1136/bjsports-2016-097120.69

    Article  Google Scholar 

  9. Maeda S, Otsuki T, Iemitsu M, Kamioka M, Sugawara J, Kuno S, Ajisaka R, Tanaka H (2006) Effects of leg resistance training on arterial function in older men. Br J Sports Med 40(10):867–869. https://doi.org/10.1136/bjsm.2006.029538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Okamoto T, Masuhara M, Ikuta K (2009) Upper but not lower limb resistance training increases arterial stiffness in humans. Eur J Appl Physiol 107(2):127–134. https://doi.org/10.1007/s00421-009-1110-x

    Article  PubMed  Google Scholar 

  11. Li Y, Bopp M, Botta F, Nussbaumer M, Schäfer J, Roth R, Schmidt-Trucksäss A, Hanssen H (2015) Lower body vs. upper body resistance training and arterial stiffness in young men. Int J Sports Med 36(12):960–967. https://doi.org/10.1055/s-0035-1549921

    Article  PubMed  CAS  Google Scholar 

  12. Reckelhoff JF (2001) Gender differences in the regulation of blood pressure. Hypertension 37(5):1199–1208

    Article  PubMed  CAS  Google Scholar 

  13. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112(15):2254–2262. https://doi.org/10.1161/circulationaha.105.541078

    Article  PubMed  Google Scholar 

  14. Collier SR, Frechette V, Sandberg K, Schafer P, Ji H, Smulyan H, Fernhall B (2011) Sex differences in resting hemodynamics and arterial stiffness following 4 weeks of resistance versus aerobic exercise training in individuals with pre-hypertension to stage 1 hypertension. Biol Sex Differ 2(1):9. https://doi.org/10.1186/2042-6410-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Winett RA, Carpinelli RN (2001) Potential health-related benefits of resistance training. Prev Med 33(5):503–513. https://doi.org/10.1006/pmed.2001.0909

    Article  PubMed  CAS  Google Scholar 

  16. Layne JE, Nelson ME (1999) The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc 31(1):25–30

    Article  PubMed  CAS  Google Scholar 

  17. Esformes JI, Norman F, Sigley J, Birch KM (2006) The influence of menstrual cycle phase upon postexercise hypotension. Med Sci Sports Exerc 38(3):484–491. https://doi.org/10.1249/01.mss.0000193559.98095.ea

    Article  PubMed  Google Scholar 

  18. Kingsley JD, Tai YL, Mayo X, Glasgow A, Marshall E (2017) Free-weight resistance exercise on pulse wave reflection and arterial stiffness between sexes in young, resistance-trained adults. Eur J Sport Sci 17(8):1056–1064. https://doi.org/10.1080/17461391.2017.1342275

    Article  PubMed  Google Scholar 

  19. Baechle TR, Earle RW (2008) Essentials of strength training and conditioning, 3rd edn. Human Kinetics, Champaign

    Google Scholar 

  20. Simão R, Fleck SJ, Polito M, Monteiro W, Farinatti P (2005) Effects of resistance training intensity, volume, and session format on the postexercise hypotensive response. J Strength Cond Res 19(4):853–858. https://doi.org/10.1519/r-16494.1

    Article  PubMed  Google Scholar 

  21. American College of Sports Medicine Position Stand (2009) Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708. https://doi.org/10.1249/mss.0b013e3181915670

    Article  Google Scholar 

  22. Franssen PML, Imholz BPM (2010) Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit 15(4):229–231

    Article  PubMed  Google Scholar 

  23. O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE (2002) Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens 15(5):426–444

    Article  PubMed  Google Scholar 

  24. Kim EJ, Park CG, Park JS, Choi CU, Kim JW, Kim SH, Lim HE, Rha SW, Seo HS, Oh DH (2007) Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study. J Hum Hypertens 21(2):141–148. https://doi.org/10.1038/sj.jhh.1002120

    Article  PubMed  CAS  Google Scholar 

  25. DeVan AE, Anton MM, Cook JN, Neidre DB, Cortez-Cooper MY, Tanaka H (2005) Acute effects of resistance exercise on arterial compliance. J Appl Physiol 98(6):2287–2291. https://doi.org/10.1152/japplphysiol.00002.2005

    Article  PubMed  Google Scholar 

  26. Kingsley JD, Mayo X, Tai YL, Fennell C (2016) Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12):3373–3380. https://doi.org/10.1519/jsc.0000000000001461

    Article  PubMed  Google Scholar 

  27. Yoon ES, Jung SJ, Cheun SK, Oh YS, Kim SH, Jae SY (2010) Effects of acute resistance exercise on arterial stiffness in young men. Korean Circ J 40(1):16–22. https://doi.org/10.4070/kcj.2010.40.1.16

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heffernan KS, Rossow L, Jae SY, Shokunbi HG, Gibson EM, Fernhall B (2006) Effect of single-leg resistance exercise on regional arterial stiffness. Eur J Appl Physiol 98(2):185–190. https://doi.org/10.1007/s00421-006-0259-9

    Article  PubMed  Google Scholar 

  29. Cortez-Cooper MY, DeVan AE, Anton MM, Farrar RP, Beckwith KA, Todd JS, Tanaka H (2005) Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am J Hypertens 18(7):930–934. https://doi.org/10.1016/j.amjhyper.2005.01.008

    Article  PubMed  Google Scholar 

  30. Munir S, Jiang B, Guilcher A, Brett S, Redwood S, Marber M, Chowienczyk P (2008) Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am J Physiol Heart Circ Physiol 294(4):H1645–H1650. https://doi.org/10.1152/ajpheart.01171.2007

    Article  PubMed  CAS  Google Scholar 

  31. Duprez DA (2010) Arterial stiffness and endothelial function: key players in vascular health. Hypertension 55(3):612–613. https://doi.org/10.1161/hypertensionaha.109.144725

    Article  PubMed  CAS  Google Scholar 

  32. de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230

    Article  PubMed  Google Scholar 

  33. Thijssen DHJ, Dawson EA, Tinken TM, Cable NT, Green D (2009) Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension 53(6):986–992. https://doi.org/10.1161/hypertensionaha.109.131508

    Article  PubMed  CAS  Google Scholar 

  34. Green DJ (2009) Exercise training as vascular medicine: direct impacts on the vasculature in humans. Exerc Sport Sci Rev 37(4):196–202. https://doi.org/10.1097/jes.0b013e3181b7b6e3

    Article  PubMed  Google Scholar 

  35. Convertino VA (1998) Gender differences in autonomic functions associated with blood pressure regulation. Am J Physiol 275(6 Pt 2):R1909–R1920

    PubMed  CAS  Google Scholar 

  36. Nieman D, Dew D, Krasen P (2013) Gender difference in the acute influence of a 2-hour run on arterial stiffness in trained runners. Res Sports Med 21(1):66–77. https://doi.org/10.1080/15438627.2012.738445

    Article  PubMed  Google Scholar 

  37. Müller J, Wilms M, Oberhoffer R (2015) Acute effects of submaximal endurance training on arterial stiffness in healthy middle- and long-distance runners. J Clin Hypertens (Greenwich) 17(5):371–374. https://doi.org/10.1111/jch.12530

    Article  Google Scholar 

  38. Vlachopoulos C, Kardara D, Anastasakis A, Baou K, Terentes-Printzios D, Tousoulis D, Stefanadis C (2010) Arterial stiffness and wave reflections in marathon runners. Am J Hypertens 23(9):974–979. https://doi.org/10.1038/ajh.2010.99

    Article  PubMed  Google Scholar 

  39. Carpio-Rivera E, Moncada-Jiménez J, Salazar-Rojas W, Solera-Herrera A (2016) Acute effects of exercise on blood pressure: a meta-analytic investigation. Arq Bras Cardiol 106(5):422–433. https://doi.org/10.5935/abc.20160064

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wickwire PJ, McLester JR, Green JM, Crews TR (2009) Acute heart rate, blood pressure, and RPE responses during super slow vs. traditional machine resistance training protocols using small muscle group exercises. J Strength Cond Res 23(1):72–79. https://doi.org/10.1519/jsc.0b013e3181854b15

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anke Schmitz for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Tomschi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The used protocols in this study were approved by the ethics committee of the German Sport University Cologne. These protocols align with the Declaration of Helsinki of 1964.

Informed consent

All participants gave written informed consent to participate in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomschi, F., Köster, P., Predel, HG. et al. Acute effects of lower and upper body-resistance training on arterial stiffness, peripheral, and central blood pressure in young normotensive women. Sport Sci Health 14, 357–363 (2018). https://doi.org/10.1007/s11332-018-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-018-0440-7

Keywords

Navigation