Sport Sciences for Health

, Volume 14, Issue 1, pp 143–149 | Cite as

Optimal load for the muscle power profile of prone bench pull in Brazilian Jiu-Jitsu athletes

  • Lucas Duarte Tavares
  • Felipe Zanchetta
  • Thiago Lasevicius
  • Aluisio Anorato
  • Eduardo Oliveira de Souza
  • Gilberto Candido Laurentino
  • Emerson Franchini
Original Article



No studies were observed optimal intensity loads for the muscle power performance during prone bench pull exercise in Brazilian Jiu-Jitsu athletes (BJJ) and this exercise is more similar with grip technics.


To identify the optimal intensity for the muscle power performance variables during PBP exercise in BJJ athletes.


Fifteen athletes (25.5 ± 4.9 years; 65.6 ± 12.2 kg; 177.5 ± 4.7 cm) performed PBP at 30, 40, 50 and 60% of one repetition maximum (1RM) in a random order. The mean power (MP), mean velocity (MV), mean propulsive power (MPP) and mean propulsive velocity (MPV) were determined by measuring the barbell displacement by a linear encoder.


In all power performance variables, higher power output was observed at 40 and 50% 1RM when compared to 30 and 60% 1RM (MP: F = 29.07; p < 0.001; MV: F = 40.80; p < 0.001; MPP: F = 53.69; p = 0.003; MPV: F = 166.2; p > 0.001). Additionally, it was observed higher MPP at 50% 1RM when compared to 40% 1RM (F = 55.23; p < 0.001). The polynomial adjustment indicated that the optimal intensity load for producing highest power performance ranged from 45 to 50% 1RM (R 2 = 0.938–0.989) across all variables.


The loads between 45 and 50% 1RM produced the optimal muscle power performance during PBP exercise in BJJ athletes.


Submission fight Grappling sports Combat sports Strength training 



Brazilian Jiu-Jitsu


Prone bench pull


One repetition maximum


Mean power


Mean velocity


Mean propulsive power


Mean propulsive velocity


Coefficient of variation


Intraclass correlation coefficient


Effect size

ESCI diff

Effect size confidence differences interval


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the local ethics committee (CAAE: 72552817.2.0000.5511) and the athletes were informed of the purposes and inherent risks associated with this research.

Informed consent

The athletes provided their written informed consent.


  1. 1.
    Follmer B, Dellagrana RA, Franchini E, Diefenthaeler F (2015) Relationship of kimono grip strength tests with isokinetic parameters in jiu-jitsu athletes. Rev Bras Cineantropometria Desempenho Humano 17(5):575–582CrossRefGoogle Scholar
  2. 2.
    Andreato LV, Julio UF, Goncalves Panissa VL, Del Conti Esteves JV, Hardt F, Franzoi de Moraes SM, Oliveira de Souza C, Franchini E (2015) Brazilian jiu-jitsu simulated competition part II: physical performance, time-motion, technical–tactical analyses, and perceptual responses. J Strength Cond Res 29(7):2015–2025. CrossRefPubMedGoogle Scholar
  3. 3.
    da Silva BV, Ide BN, de Moura Simim MA, Marocolo M, da Mota GR (2014) Neuromuscular responses to simulated Brazilian jiu-jitsu fights. J Hum Kinet 44:249–257. PubMedPubMedCentralGoogle Scholar
  4. 4.
    da Silva BV, Simim MA, Marocolo M, Franchini E, da Mota GR (2015) Optimal load for the peak power and maximal strength of the upper body in Brazilian jiu-jitsu athletes. J Strength Cond Res 29(6):1616–1621. CrossRefPubMedGoogle Scholar
  5. 5.
    Correa da Silva BV, Marocolo Junior M, de Moura Simim MA, Rezende FN, Franchini E, da Mota GR (2013) Reliability in kimono grip strength tests and comparison between elite and non-elite Brazilian jiu-jitsu players. Arch Budo 8(2):103–107Google Scholar
  6. 6.
    Ratamess NA (2011) Strength and conditioning for grappling sports. Strength Cond J 33(6):18–24CrossRefGoogle Scholar
  7. 7.
    Ratamess NA (1998) Weight training for jiu jitsu. Strength Cond J 20(5):8–15CrossRefGoogle Scholar
  8. 8.
    Loturco I, Nakamura FY, Kobal R, Gil S, Pivetti B, Pereira LA, Roschel H (2016) Traditional periodization versus optimum training load applied to soccer players: effects on neuromuscular abilities. Int J Sports Med. Google Scholar
  9. 9.
    Young KP, Haff GG, Newton RU, Gabbett TJ, Sheppard JM (2015) Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes. Int J Sports Physiol Perform 10(2):232–237. CrossRefPubMedGoogle Scholar
  10. 10.
    Loturco I, Ugrinowitsch C, Roschel H, Tricoli V, Gonzalez-Badillo JJ (2013) Training at the optimum power zone produces similar performance improvements to traditional strength training. J Sports Sci Med 12(1):109–115PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cormie P, McGuigan MR, Newton RU (2010) Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc 42(8):1582–1598. CrossRefPubMedGoogle Scholar
  12. 12.
    Cronin J, Sleivert G (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med 35(3):213–234CrossRefPubMedGoogle Scholar
  13. 13.
    Kawamori N, Haff GG (2004) The optimal training load for the development of muscular power. J Strength Cond Res 18(3):675–684.<675:TOTLFT>2.0.CO;2 PubMedGoogle Scholar
  14. 14.
    Izquierdo M, Hakkinen K, Gonzalez-Badillo JJ, Ibanez J, Gorostiaga EM (2002) Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 87(3):264–271. CrossRefPubMedGoogle Scholar
  15. 15.
    Garcia-Pallares J, Lopez-Gullon JM, Muriel X, Diaz A, Izquierdo M (2011) Physical fitness factors to predict male Olympic wrestling performance. Eur J Appl Physiol 111(8):1747–1758. CrossRefPubMedGoogle Scholar
  16. 16.
    Loturco I, Pereira LA, Abad CC, Tabares F, Moraes JE, Kobal R, Kitamura K, Nakamura FY (2016) Bar velocities capable of optimising the muscle power in strength-power exercises. J Sports Sci. Google Scholar
  17. 17.
    Loturco I, Nakamura FY, Tricoli V, Kobal R, Cal Abad CC, Kitamura K, Ugrinowitsch C, Gil S, Pereira LA, Gonzalez-Badillo JJ (2015) Determining the optimum power load in jump squat using the mean propulsive velocity. PLoS ONE 10(10):e0140102. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sanchez-Medina L, Gonzalez-Badillo JJ, Perez CE, Pallares JG (2014) Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med 35(3):209–216. PubMedGoogle Scholar
  19. 19.
    Loturco I, Tricoli V, Roschel H, Nakamura FY, Cal Abad CC, Kobal R, Gil S, Gonzalez-Badillo JJ (2014) Transference of traditional versus complex strength and power training to sprint performance. J Hum Kinet 41:265–273. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maio Alves JM, Rebelo AN, Abrantes C, Sampaio J (2010) Short-term effects of complex and contrast training in soccer players’ vertical jump, sprint, and agility abilities. J Strength Cond Res 24(4):936–941. CrossRefPubMedGoogle Scholar
  21. 21.
    Lloyd R, Deutsch M (2008) Effect of order of exercise on performance during a complex training session in rugby players. J Sports Sci 26(8):803–809. CrossRefPubMedGoogle Scholar
  22. 22.
    Ebben WP (2002) Complex training: a brief review. J Sports Sci Med 1(2):42–46PubMedPubMedCentralGoogle Scholar
  23. 23.
    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB (2012) Optimal force–velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc 44(2):313–322. CrossRefPubMedGoogle Scholar
  24. 24.
    Newton RU, Rogers RA, Volek JS, Hakkinen K, Kraemer WJ (2006) Four weeks of optimal load ballistic resistance training at the end of season attenuates declining jump performance of women volleyball players. J Strength Cond Res 20(4):955–961. PubMedGoogle Scholar
  25. 25.
    International Society for the Advancement of Kinanthropometry (ISAK) (2012) International standards for anthropometric assessment. ISAK, AustraliaGoogle Scholar
  26. 26.
    Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40(3):497–504CrossRefPubMedGoogle Scholar
  27. 27.
    Siri WE (1993) Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition 9(5):480–491 (discussion 480, 492) PubMedGoogle Scholar
  28. 28.
    Brown LE, Weir JP (2001) Asep procedures recommendation 1: accurate assessment of muscular strength and power. J Exerc Physiol 4(3):1–21Google Scholar
  29. 29.
    Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C (1995) A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol Occup Physiol 70(5):379–386CrossRefPubMedGoogle Scholar
  30. 30.
    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ (2010) Importance of the propulsive phase in strength assessment. Int J Sports Med 31(2):123–129. CrossRefPubMedGoogle Scholar
  31. 31.
    Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82(4):591–605. CrossRefPubMedGoogle Scholar
  32. 32.
    Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. CrossRefPubMedGoogle Scholar
  33. 33.
    Morin JB, Samozino P (2016) Interpreting power–force–velocity profiles for individualized and specific training. Int J Sports Physiol Perform 11(2):267–272. CrossRefPubMedGoogle Scholar
  34. 34.
    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB (2014) Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med 35(6):505–510. PubMedGoogle Scholar
  35. 35.
    Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945. CrossRefPubMedGoogle Scholar
  36. 36.
    Andreato LV, Franchini E, de Moraes SM, Pastorio JJ, da Silva DF, Esteves JV, Branco BH, Romero PV, Machado FA (2013) Physiological and technical–tactical analysis in Brazilian jiu-jitsu competition. Asian J Sports Med 4(2):137–143CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gonzalez-Badillo JJ, Sanchez-Medina L (2010) Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med 31(5):347–352. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2017

Authors and Affiliations

  • Lucas Duarte Tavares
    • 1
    • 2
    • 3
    • 5
  • Felipe Zanchetta
    • 2
  • Thiago Lasevicius
    • 1
    • 2
  • Aluisio Anorato
    • 2
  • Eduardo Oliveira de Souza
    • 4
  • Gilberto Candido Laurentino
    • 1
  • Emerson Franchini
    • 3
  1. 1.Laboratory of Adaptations to Strength Training, School of Physical Education and SportsUniversity of São PauloSão PauloBrazil
  2. 2.Research Group of Physical and Sports TrainingFaculdade DrummondSão PauloBrazil
  3. 3.Martial Arts and Combat Sports Research Group, School of Physical Education and SportUniversity of São PauloSão PauloBrazil
  4. 4.Department of Health Sciences and Human PerformanceUniversity of TampaTampaUSA
  5. 5.Research Group of Conditioning and Sports Training, Department of Physical Education and SportsFaculdade DrummondSão PauloBrazil

Personalised recommendations