Advertisement

Sport Sciences for Health

, Volume 14, Issue 1, pp 1–7 | Cite as

Effects of resistance training on oxidative stress-related biomarkers in metabolic diseases: a review

  • T. Gacitua
  • L. Karachon
  • E. Romero
  • P. Parra
  • C. Poblete
  • J. Russell
  • Ramón Rodrigo
Review

Abstract

Social and behavioral patterns of physical activity and diet have contributed to the increased incidence of obesity, due to high caloric intake associated to low physical activity. This metabolic impairment can give rise to the occurrence of oxidative stress, which is a key factor in pathogenesis of several metabolic diseases such as metabolic syndrome or type 2 diabetes mellitus (T2DM). Previous studies have reported reduced blood levels of oxidative stress biomarkers and related clinical parameters in obesity, T2DM and metabolic syndrome, following endurance exercise. However, similar studies about the effects of resistance exercise are still lacking. The aim of the present review was to present an update of available evidence about the relationship between resistance training, exercise and oxidative stress biomarkers. Therefore, this knowledge could provide the basis suggesting potential clinical benefits of resistance training as an adjunct therapy for obesity and other metabolic diseases.

Keywords

Resistance training Oxidative stress Obesity Metabolic diseases 

Notes

Acknowledgements

Supported by FONDEF ID15I10285.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Boden G, Homko C, Barrero CA, Stein TP, Chen X, Cheung P, Fecchio C, Koller S, Merali S (2015) Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci Transl Med 7:1–9. doi: 10.1126/scitranslmed.aac4765 CrossRefGoogle Scholar
  2. 2.
    Rains J, Jain S (2013) Oxidative stress, insulin signaling and diabetes. Free Radic Biol Med 50:567–575. doi: 10.1016/j.freeradbiomed.2010.12.006 CrossRefGoogle Scholar
  3. 3.
    Rodrigo R, Prat H, Passalacqua W, Araya J, Bachler J (2008) Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clin Sci 114:625–634. doi: 10.1042/CS20070343 CrossRefPubMedGoogle Scholar
  4. 4.
    Buresh R, Berg K (2015) A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness. Sports Med Open 1:3. doi: 10.1186/s40798-014-0003-7 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    González J, Valls N, Brito R, Rodrigo R (2014) Essential hypertension and oxidative stress: new insights. World J Cardiol 6:353–366. doi: 10.4330/wjc.v6.i6.353 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948. doi: 10.1038/nature04634 CrossRefPubMedGoogle Scholar
  7. 7.
    Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6:456–480. doi: 10.4239/wjd.v6.i3.456 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hotamisligil G, Erbay E (2010) Nutrient sensing and inflammation in metabolic diseases. Genetics 8:1–26. doi: 10.1038/nri2449 Google Scholar
  9. 9.
    Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109–120. doi: 10.14336/AD.2014.0305 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gould DW, Lahart I, Carmichael AR (2013) Cancer cachexia prevention via physical exercise: molecular mechanisms. J Cachexia Sarcopenia Muscle 4:111–124. doi: 10.1007/s13539-012-0096-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2015) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400. doi: 10.3390/ijms16010378 CrossRefGoogle Scholar
  12. 12.
    Lazar MA (2005) How obesity causes diabetes: not a tall tale. Science 307:373–375. doi: 10.1126/science.1104342 CrossRefPubMedGoogle Scholar
  13. 13.
    Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiol Res Pract. doi: 10.1155/2014/943162 Google Scholar
  14. 14.
    Teixeira-Lemos E, Nunes S, Teixeira F, Reis F (2011) Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol (BioMed Central Ltd) 10:1–15. doi: 10.1186/1475-2840-10-12 CrossRefGoogle Scholar
  15. 15.
    Mraz M, Haluzik M (2014) The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol 222:R113–R127. doi: 10.1530/JOE-14-0283 CrossRefPubMedGoogle Scholar
  16. 16.
    Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes 30:400–418. doi: 10.1038/sj.ijo.0803177 CrossRefGoogle Scholar
  17. 17.
    Guo SS, Wu W, Chumlea WC, Roche AF (2002) Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr 76:653–658. doi: 10.1038/sj.ijo.0802251 CrossRefPubMedGoogle Scholar
  18. 18.
    Le Lay S, Simard G, Martinez MC, Andriantsitohaina R (2014) Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid Med Cell Longev. doi: 10.1155/2014/908539 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sallam N, Laher I (2016) Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev 2016:1–32. doi: 10.1155/2016/7239639 CrossRefGoogle Scholar
  20. 20.
    Park K, Gross M, Lee DH, Holvoet P, Himes JH, Shikany JM, Jacobs DR (2009) Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes Care 32:1302–1307. doi: 10.2337/dc09-0259 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaneto H, Katakami N, Matsuhisa M, Matsuoka T (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm. doi: 10.1155/2010/453892 Google Scholar
  22. 22.
    Henriksen EJ, Diamond-Stanic MK, Marchionne EM (2011) Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 51:993–999. doi: 10.1016/j.freeradbiomed.2010.12.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Matsuda M, Shimomura I (2014) Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk. Horm Mol Biol Clin Investig 19:75–88. doi: 10.1515/hmbci-2014-0001 PubMedGoogle Scholar
  24. 24.
    López J, López LM (2008) Fisiología Clínica del ejercicio, 1era edn. Editorial Panamericana, MadridGoogle Scholar
  25. 25.
    Ehrman JK, Gordon PM, Visich PS, Ketetian SJ (2013) Clinical exercise physiology, 3rd edn. Human Kinetics, ChampaignGoogle Scholar
  26. 26.
    Kenney WL, Wilmore JH, Costill DL (2012) Physiology of sport and exercise. Human Kinetics, ChampaignGoogle Scholar
  27. 27.
    Schmitz KH, Jensen MD, Kugler KC, Jeffery RW, Leon AS (2003) Strength training for obesity prevention in midlife women. Int J Obes Relat Metab Disord 27(3):326–333CrossRefPubMedGoogle Scholar
  28. 28.
    Dias I, Farinatti P, De Souza MG, Manhanini DP, Balthazar E, Dantas DL, De Andrade Pinto EH, Bouskela E, Kraemer-Aguiar LG (2015) Effects of resistance training on obese adolescents. Med Sci Sports Exerc 47(12):2636–2644. doi: 10.1249/MSS.0000000000000705 CrossRefPubMedGoogle Scholar
  29. 29.
    ACSM (2009) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 41:1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c CrossRefGoogle Scholar
  30. 30.
    Weineck J (2005) Entrenamiento Total. 1era edn. Editorial Paidotribo, Buenos AiresGoogle Scholar
  31. 31.
    Willis LH, Slentz CA, Bateman LA (2012) Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol 113(12):1831–1837. doi: 10.1152/japplphysiol.01370.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Strasser B, Schobersberger W (2011) Evidence for resistance training as a treatment therapy in obesity. J Obes. doi: 10.1155/2011/482564 PubMedGoogle Scholar
  33. 33.
    Billat V (2002) Fisiología y Metodología del Entrenamiento. De la teoría a la práctica, Primera edn. Paidotribo, BarcelonaGoogle Scholar
  34. 34.
    Urso ML, Clarkson PM (2003) Oxidative stress, exercise, antioxidant supplementation. Toxicology 189:41–54 [PubMed: 12821281] CrossRefPubMedGoogle Scholar
  35. 35.
    Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide General properties and effect of hyperbaric oxygen. Biochem J 134:707–716 [PubMed: 4749271] CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    MacLaren D, Morton J (2012) Biochemistry for sport and exercise metabolism. John Wiley and Sons Ltd, OxfordGoogle Scholar
  37. 37.
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276. doi: 10.1152/physrev.00031.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5(1):265–272CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ferreira LF, Laitano O (2016) Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med (Elsevier) 98(1):18–28. doi: 10.1016/j.freeradbiomed.2016.05.011 CrossRefGoogle Scholar
  40. 40.
    Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ (2013) Studies of mitochondrial and non-mitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 18(6):603–621. doi: 10.1089/ars.2012.4623 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Espinosa A, Leiva A, Peña M, Müller M, Debandi A, Hidalgo C, Carrasco A, Jaimovich E (2006) Myotube depolarization generates reactive oxygen species through NAD (P) H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 209(2):379–388. doi: 10.1002/jcp.20745 CrossRefPubMedGoogle Scholar
  42. 42.
    Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A (2015) ROS production via P2Y1-PKC-NOX2 is triggered by extracellular atp after electrical stimulation of skeletal muscle cells. PLoS One 10(6):e0129882. doi: 10.1371/journal.pone.0129882 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pinho RA, Costa M, Lima G, Ghisi DM, Benetti M (2010) EAC, ejercicio físico y estrés oxidativo. Arq Bras Cardiol 94:531–537. doi: 10.1590/s0066-782x2010000400018 Google Scholar
  44. 44.
    Sandström ME, Zhang SJ, Bruton J, Silva JP, Reid MB, Westerblad H, Katz A (2006) Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 575:251–262. doi: 10.1113/jphysiol.2006.110601 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Donoso P, Finkelstein JP, Montecinos L, Said M, Sánchez G, Vittone L, Bull R (2014) Stimulation of NOX2 in isolated hearts reversibly sensitizes RyR2 channels to activation by cytoplasmic calcium. J Mol Cell Cardiol 68:38–46. doi: 10.1016/j.yjmcc.2013.12.028 CrossRefPubMedGoogle Scholar
  46. 46.
    Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med 43:313–338. doi: 10.1007/s40279-013-0029-x CrossRefPubMedGoogle Scholar
  47. 47.
    Oliveira ARD (2004) Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. Soc Bras Med do Esporte 10:314–318. doi: 10.1590/S1517-86922004000400008 Google Scholar
  48. 48.
    Jackson MJ (2015) Redox regulation of muscle adaptations to contractile activity and aging. J Appl Physiol 119:163–171. doi: 10.1152/japplphysiol.00760.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji L (2014) Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Arch 442:426–434. doi: 10.1007/s004240100539 CrossRefGoogle Scholar
  50. 50.
    Done AJ, Gage MJ, Nieto NC, Traustadóttir T (2016) Exercise-induced Nrf2-signaling is impaired in aging. Free Radic Biol Med 96:130–138. doi: 10.1016/j.freeradbiomed.2016.04.024 CrossRefPubMedGoogle Scholar
  51. 51.
    Zuo L, Pannell BK (2015) Redox characterization of functioning skeletal muscle. Front Physiol 338:1–9. doi: 10.3389/fphys.2015.00338 Google Scholar
  52. 52.
    Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18:1208–1246. doi: 10.1089/ars.2011.4498 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ji LL, Kang C, Zhang Y (2016) Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 98:113–122. doi: 10.1016/j.freeradbiomed.2016.02.025 CrossRefPubMedGoogle Scholar
  54. 54.
    Taylor JD, Fletcher JP, Mathis RA, Cade WT (2014) Effects of moderate- versus high-intensity exercise training on physical fitness and physical function in people with type 2 diabetes: a randomized clinical trial. Phys Ther 94:1720–1730. doi: 10.2522/ptj.20140097 CrossRefPubMedGoogle Scholar
  55. 55.
    Azizbeigi K, Azarbayjani MA, Atashak S, Stannard SR (2015) Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Res Sport Med 23:73–87. doi: 10.1080/15438627.2014.975807 CrossRefGoogle Scholar
  56. 56.
    Cakir-Atabek H, Demir S, PinarbaŞili RD, Gündüz N (2010) Effects of different resistance training intensity on indices of oxidative stress. J Strength Cond Res 24(9):2491–2497. doi: 10.1519/JSC.0b013e3181ddb111 CrossRefPubMedGoogle Scholar
  57. 57.
    Azizbeigi K, Azarbayjani M, Peeri M, Agha-Alinejad H, Stannard S (2013) The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab 23:230–238. doi: 10.1123/ijsnem.23.3.230 CrossRefPubMedGoogle Scholar
  58. 58.
    Venojärvi M, Korkmaz A, Wasenius N, Manderoos S, Heinonen OJ, Lindholm H, Aunola S, Eriksson JG, Atalay M (2013) 12 Weeks’ aerobic and resistance training without dietary intervention did not influence oxidative stress but aerobic training decreased atherogenic index in middle-aged men with impaired glucose regulation. Food Chem Toxicol 61:127–135. doi: 10.1016/j.fct.2013.04.015 CrossRefPubMedGoogle Scholar
  59. 59.
    Oliveira VN, De Bessa A, Jorge MLMP, Oliveira RJDS, De Mello MT, De Agostini GG, Jorge PT, Espindola FS (2012) The effect of different training programs on antioxidant status, oxidative stress, and metabolic control in type 2 diabetes. Appl Physiol Nutr Metab 37:334–344. doi: 10.1139/h2012-004 CrossRefPubMedGoogle Scholar
  60. 60.
    Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Baghaiee B, Aliparasti MR, Almasi S, Siahkuhian M, Baradaran B (2016) Antioxidant expression response to free radicals in active men and women fallowing to a session incremental exercise; numerical relationship between antioxidants and free radicals. Asian J Sports Med 7(2):e29901. doi: 10.5812/asjsm.29901 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Strehlow K, Rotter S, Wassmann S, Adam O, Grohé C, Laufs K, Böhm M, Nickenig G (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93(2):170–177CrossRefPubMedGoogle Scholar
  63. 63.
    Ademoglu E, Ozcan K (2013) Age-related changes in the activity and expression of manganese superoxide dismutase, and mitochondrial oxidant generation in female and male rats. Turk J Biochem 38(4):445–450CrossRefGoogle Scholar
  64. 64.
    Jiménez-Osorio A, Picazo A, González-Reyes S, Barrera-Oviedo D, Rodríguez-Arellano M, Pedraza-Chaverri J (2014) Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci 15(11):20290–20305. doi: 10.3390/ijms151120290 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127. doi: 10.2337/dc12-0116 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hsieh PL, Tseng CH, Tseng YJ, Yang WS (2016) Resistance training improves muscle function and cardiometabolic risks but not quality of life in older people with type 2 diabetes mellitus. J Geriatr Phys Ther. doi: 10.1519/jpt.0000000000000107 Google Scholar
  67. 67.
    Ash GI, Taylor BA, Thompson PD, MacDonald HV, Lamberti L, Chen M-H, Farinatti P, Kraemer WJ, Panza GA, Zaleski AL, Deshpande V, Ballard KD, Mujtaba M, White CM, Pescatello LS (2016) The antihypertensive effects of aerobic versus isometric handgrip resistance exercise. J Hypertens. doi: 10.1097/HJH.0000000000001176 PubMedGoogle Scholar
  68. 68.
    Badrov MB, Freeman SR, Zokvic MA, Millar PJ, McGowan CL (2016) Isometric exercise training lowers resting blood pressure and improves local brachial artery flow-mediated dilation equally in men and women. Eur J Appl Physiol 116(7):1289–1296. doi: 10.1007/s00421-016-3366-2 CrossRefPubMedGoogle Scholar
  69. 69.
    Son WM, Sung KD, Cho JM, Park SY (2016) Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause 24(3):262–268. doi: 10.1097/GME.0000000000000765 CrossRefGoogle Scholar
  70. 70.
    Corso LML, Macdonald HV, Johnson BT, Farinatti P, Livingston J, Zaleski AL, Blanchard A, Pescatello LS (2016) Is concurrent training efficacious antihypertensive therapy? A meta-analysis. Med Sci Sports Exerc 48(12):2398–2406. doi: 10.1249/MSS.0000000000001056 CrossRefPubMedGoogle Scholar
  71. 71.
    AbouAssi H, Slentz C, Mikus C, Tanner C, Bateman L, Willis L, Shields A, Piner L, Penry L, Kraus E, Huffman K, Bales C, Houmard J, Kraus W (2015) The effects of aerobic, resistance and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial. J Appl Physiol 118:1474–1482. doi: 10.1152/japplphysiol.00509.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, Kibbe M (2009) Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA 301(2):165–174. doi: 10.1001/jama.2008.962 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Normandin E, Chmelo E, Lyles MF, Marsh AP, Nicklas BJ (2016) Effect of resistance training and caloric restriction on the metabolic syndrome. Med Sci Sport Exerc. doi: 10.1249/MSS.0000000000001122 Google Scholar
  74. 74.
    García M, Martinez J, Izquierdo M, Gorostiaga E, Grijalba A, Ibañez J (2012) Effect of resistance training and hypocaloric diets with different protein content on body composition and lipid profile in hypercholesterolemic obese women. Nutr Hosp 27(5):1511–1520. doi: 10.3305/nh.2012.27.5.5921 Google Scholar
  75. 75.
    Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, Takano Y, Ueno T, Koga H, George J, Shiba N, Torimura T (2017) Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol 66(1):142–152. doi: 10.1016/j.jhep.2016.08.023 CrossRefPubMedGoogle Scholar
  76. 76.
    Zou J, Wang Z, Qu Q, Wang L (2015) Resistance training improves hyperglycemia and dyslipidemia, highly prevalent among nonelderly, nondiabetic, chronically disabled stroke patients. Arch Phys Med Rehabil 96(7):1291–1296. doi: 10.1016/j.apmr.2015.03.008 CrossRefPubMedGoogle Scholar
  77. 77.
    Mann S, Beedie C, Jimenez A (2014) Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sport Med 44(2):211–221. doi: 10.1007/s40279-013-0110-5 CrossRefGoogle Scholar
  78. 78.
    Roberts C, Andrea H, Barnard J (2014) Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 3(1):1–58. doi: 10.1002/cphy.c110062 Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  • T. Gacitua
    • 1
  • L. Karachon
    • 1
  • E. Romero
    • 1
  • P. Parra
    • 1
  • C. Poblete
    • 1
    • 2
    • 4
  • J. Russell
    • 2
    • 3
  • Ramón Rodrigo
    • 1
  1. 1.Laboratory of Oxidative Stress and Nephrotoxicity, Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical SciencesUniversity of ChileSantiago Chile
  2. 2.Laboratory of Physical Activity, Sport and Health, Faculty of Medical SciencesUniversity of SantiagoSantiagoChile
  3. 3.Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
  4. 4.School of Physical Education, Faculty of EducationUniversidad de las Américas UDLASantiagoChile

Personalised recommendations