Sport Sciences for Health

, Volume 14, Issue 1, pp 53–60 | Cite as

Testosterone and cortisol response to acute intermittent and continuous aerobic exercise in sedentary men

  • Mohammad Amin Ahmadi
  • Abdossaleh Zar
  • Peter Krustrup
  • Fatemeh Ahmadi
Original Article



Different types of physical activity can induce different hormonal and physiological responses. In this study, we examined the testosterone, cortisol, creatine kinase (CK) and lactate dehydrogenase (LDH) response to acute intermittent (IE) and continuous (CE) aerobic exercise in sedentary men.


In this single-blinded randomised crossover study, eleven sedentary healthy males completed protocols (CE and IE) on two different days separated by a 1-week washout period. CE comprised 40 min of running on a treadmill at 60% of reserve heart rate. IE consisted of 40 min of running on a treadmill with intensity alternating between 50% (2 min) and 80% (1 min) of reserve heart rate. Blood samples were taken before and immediately after each exercise session.


Serum testosterone concentrations increased significantly after IE (+8.0%, P = 0.021) and decreased non-significantly after CE (−5.8%, P = 0.409). The IE response was greater than the CE response (P = 0.01). Cortisol concentration decreased in both IE and CE exercise (P = 0.001 and P = 0.016, respectively), by −33.6 and −34.6%, respectively. The testosterone to cortisol ratio increased significantly after both forms of exercise (IE: P = 0.003; CE: P = 0.041). CK concentrations significantly increased from PRE to POST (IE: +20.6%, P = 0.001; CE: +26.5%, P = 0.046). Despite the increase in concentrations of LDH, the changes were not significant (F (3, 30) = 1.01, P = 0.402; IE: +11.4% and CE: +23.1%).


In summary, it seems that intermittent exercise can be more useful in the development of body anabolic processes in sedentary men due to pronounced increases in testosterone.


Testosterone Cortisol Testosterone to cortisol ratio Intermittent exercise Continuous exercise 



The authors would like to thank the subjects for their committed participation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Young DR, Hivert M-F, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, Lewis CE, Owen N, Perry CK, Siddique J (2016) Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation 134(13):e262–e279CrossRefPubMedGoogle Scholar
  2. 2.
    Miller KR, McClave SA, Jampolis MB, Hurt RT, Krueger K, Landes S, Collier B (2016) The health benefits of exercise and physical activity. Curr Nutr Rep 5(3):204–212. doi: 10.1007/s13668-016-0175-5 CrossRefGoogle Scholar
  3. 3.
    Hackney AC, Hosick K, Myer A, Rubin D, Battaglini CL (2012) Testosterone responses to intensive interval versus steady-state endurance exercise. J Endocrinol Invest 35(11):947–950CrossRefPubMedGoogle Scholar
  4. 4.
    Oja P, Titze S (2011) Physical activity recommendations for public health: development and policy context. EPMA J 2(3):253–259CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guimaraes GV, Ciolac EG, Carvalho VO, D’Avila VM, Bortolotto LA, Bocchi EA (2010) Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res 33(6):627–632. doi: 10.1038/hr.2010.42 CrossRefPubMedGoogle Scholar
  6. 6.
    Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training. Sports Med 32(1):53–73. doi: 10.2165/00007256-200232010-00003 CrossRefPubMedGoogle Scholar
  7. 7.
    Winters S (2004) Male hypogonadism: basic, clinical, and therapeutic principles, 1st edn. Humana Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Esposito A, Bianchi V (2012) Cortisol: physiology, regulation and health implications. Nova Science Publishers Inc, New YorkGoogle Scholar
  9. 9.
    Hloogeveen A, Zonderland M (1996) Relationships between testosterone, cortisol and performance in professional cyclists. Int J Sports Med 17(6):423–428CrossRefGoogle Scholar
  10. 10.
    De Luccia TPB (2016) Use of the testosterone/cortisol ratio variable in sports. Open Sports Sci J 9(1):104–113CrossRefGoogle Scholar
  11. 11.
    Anderson T, Lane AR, Hackney AC (2016) Cortisol and testosterone dynamics following exhaustive endurance exercise. Eur J Appl Physiol 116(8):1503–1509. doi: 10.1007/s00421-016-3406-y CrossRefPubMedGoogle Scholar
  12. 12.
    Rosa G, Fortes MdSR, Mello DBd (2016) Concurrent training decreases cortisol but not zinc concentrations: effects of distinct exercise protocols. Scientifica. doi: 10.1155/2016/7643016 (Article ID 7643016) PubMedPubMedCentralGoogle Scholar
  13. 13.
    Vuorimaa T, Virlander R, Kurkilahti P, Vasankari T, Häkkinen K (2006) Acute changes in muscle activation and leg extension performance after different running exercises in elite long distance runners. Eur J Appl Physiol 96(3):282–291. doi: 10.1007/s00421-005-0054-z CrossRefPubMedGoogle Scholar
  14. 14.
    Vuorimaa T, Ahotupa M, Häkkinen K, Vasankari T (2008) Different hormonal response to continuous and intermittent exercise in middle-distance and marathon runners. Scand J Med Sci Sports 18(5):565–572CrossRefPubMedGoogle Scholar
  15. 15.
    Sokolow M, Lyon TP (1949) The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 37(2):161–186. doi: 10.1016/0002-8703(49)90562-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, Wisloff U, Ingul CB, Stoylen A (2012) Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol 19(2):151–160. doi: 10.1177/1741826711400512 CrossRefPubMedGoogle Scholar
  17. 17.
    McArdle WD, Katch FI, Katch VL (2010) Exercise physiology: nutrition, energy, and human performance, 7th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  18. 18.
    Foster C, Jackson AS, Pollock ML, Taylor MM, Hare J, Sennett SM, Rod JL, Sarwar M, Schmidt DH (1984) Generalized equations for predicting functional capacity from treadmill performance. Am Heart J 107(6):1229–1234. doi: 10.1016/0002-8703(84)90282-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Ciolac EG, Guimarães GV, Bortolotto LA, Doria EL, Bocchi EA (2009) Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in long-term treated hypertensive patients. Int J Cardiol 133(3):381–387. doi: 10.1016/j.ijcard.2008.02.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Karvonen MJ, Kentala E, Mustala O (1957) The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn 35:307–315PubMedGoogle Scholar
  21. 21.
    Sgrò P, Romanelli F, Felici F, Sansone M, Bianchini S, Buzzachera C, Baldari C, Guidetti L, Pigozzi F, Lenzi A (2014) Testosterone responses to standardized short-term sub-maximal and maximal endurance exercises: issues on the dynamic adaptive role of the hypothalamic-pituitary-testicular axis. J Endocrinol Invest 37(1):13–24CrossRefPubMedGoogle Scholar
  22. 22.
    Vingren JL, Budnar RG, McKenzie AL, Duplanty AA, Luk H-Y, Levitt DE, Armstrong LE (2016) The acute testosterone, growth hormone, cortisol and interleukin-6 response to 164-km road cycling in a hot environment. J Sports Sci 34(8):694–699. doi: 10.1080/02640414.2015.1068440 CrossRefPubMedGoogle Scholar
  23. 23.
    Karkoulias K, Habeos I, Charokopos N, Tsiamita M, Mazarakis A, Pouli A, Spiropoulos K (2008) Hormonal responses to marathon running in non-elite athletes. Eur J Intern Med 19(8):598–601CrossRefPubMedGoogle Scholar
  24. 24.
    Guezennec CY, Ferre P, Serrurier B, Merino D, Pesquies PC (1982) Effects of prolonged physical exercise and fasting upon plasma testosterone level in rats. Eur J Appl Physiol 49(2):159–168. doi: 10.1007/bf02334064 CrossRefGoogle Scholar
  25. 25.
    Rodrigues P, Wassmansdorf R, Salgueirosa FM, Hernandez SG, Nascimento VB, Daros LB, Wharton L, Osiecki R (2016) Time-course of changes in indirect markers of muscle damage responses following a 130-km cycling race. Rev Brasileira de Cineantropometria Desempenho Humano 18(3):322–331CrossRefGoogle Scholar
  26. 26.
    Baird MF, Graham SM, Baker JS, Bickerstaff GF (2012) Creatine-kinase-and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. doi: 10.1155/2012/960363 (Article ID 960363) PubMedPubMedCentralGoogle Scholar
  27. 27.
    JeŽová D, Vigaš M, Tatár P, Kvetňanský R, Nazar K, Kaciuba-UŚcilko H, Kozlowski S (1985) Plasma testosterone and catecholamine responses to physical exercise of different intensities in men. Eur J Appl Physiol 54(1):62–66. doi: 10.1007/bf00426300 CrossRefGoogle Scholar
  28. 28.
    Derbré F, Vincent S, Maitel B, Jacob C, Delamarche P, Delamarche A, Zouhal H (2010) Androgen responses to sprint exercise in young men. Int J Sports Med 31(05):291–297CrossRefPubMedGoogle Scholar
  29. 29.
    Bally L, Zueger T, Buehler T, Dokumaci AS, Speck C, Pasi N, Ciller C, Paganini D, Feller K, Loher H (2016) Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: a randomised crossover study. Diabetologia 59(4):776–784CrossRefPubMedGoogle Scholar
  30. 30.
    Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D (2014) Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 307(7):E539–E552CrossRefPubMedGoogle Scholar
  31. 31.
    Wahl P, Mathes S, Köhler K, Achtzehn S, Bloch W, Mester J (2013) Acute metabolic, hormonal, and psychological responses to different endurance training protocols. Horm Metab Res 45(11):827–833CrossRefPubMedGoogle Scholar
  32. 32.
    Hoffman JR, Falk B, Radom-Isaac S, Weinstein Y, Magazanik A, Wang Y, Yarom Y (1996) The effect of environmental temperature on testosterone and cortisol responses to high Intensity, intermittent exercise in humans. Eur J Appl Physiol 75(1):83–87. doi: 10.1007/s004210050130 CrossRefGoogle Scholar
  33. 33.
    Copeland JL, Consitt LA, Tremblay MS (2002) Hormonal responses to endurance and resistance exercise in females aged 19–69 years. J Gerontol Ser A Biol Sci Med Sci 57(4):B158–B165CrossRefGoogle Scholar
  34. 34.
    Viru A, Viru M (2004) Cortisol-essential adaptation hormone in exercise. Int J Sports Med 25(06):461–464CrossRefPubMedGoogle Scholar
  35. 35.
    Lo C, Brown M, Contursi M, Lewis G, Lieberman D, Baggish A (2016) Characterization of cortisol kinetics at different running intensities. J Am Coll Cardiol 67(13):1635CrossRefGoogle Scholar
  36. 36.
    Hill E, Zack E, Battaglini C, Viru M, Viru A, Hackney A (2008) Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Invest 31(7):587–591CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  • Mohammad Amin Ahmadi
    • 1
  • Abdossaleh Zar
    • 2
  • Peter Krustrup
    • 3
  • Fatemeh Ahmadi
    • 1
  1. 1.Department of Exercise Physiology, Faculty of Sport ScienceShahid Chamran University of AhvazAhvazIran
  2. 2.Department of Sport ScienceJahrom UniversityJahromIran
  3. 3.Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC)University of Southern DenmarkOdenseDenmark

Personalised recommendations