Skip to main content

Advertisement

Log in

The impact of obstructive apnea sleep syndrome on chemical function

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Objective/hypothesis

To investigate the impact of obstructive sleep apnea syndrome (OSAS) on the olfactory and gustatory functions, and the potential mechanisms affecting olfactory and gustatory functions.

Materials and methods

A total of 120 men between the ages of 41 and 70 (mean age (SD) = 56 ± 7.5) were divided into three groups according to polysomnography results: snoring group, mild to moderate OSAS group, and severe OSAS group. Olfactory and gustatory functions were evaluated by the Sniffin’ Sticks test and the triple-drop method, respectively. Otorhinolaryngologic examination, as well as sleep and quality of life questionnaires, were completed by all subjects one day before or after polysomnography.

Results

There was a significant difference in odor thresholds (THR), odor discrimination (OD), odor identification (OI), thresholds-discrimination-identification (TDI) (p < 0.001, p < 0.001, p = 0.003, p < 0.001), and total taste score (p = 0.004, p = 0.021, p = 0.006) in all three groups. Of the subjects in the OSAS group, 43 (54%) exhibited olfactory dysfunction, including 18 subjects (45%) in the mild to moderate group and 25 subjects (63%) in the severe group. Significant negative correlations were found between all olfactory parameters and polysomnography parameters. Furthermore, a negative correlation was present between the total taste scores and the apnea-hypopnea index (AHI).

Conclusion

Men with OSAS exhibited impairment in olfactory and gustatory functions. Significant correlations were found between AHI and olfactory parameters, as well as between AHI and total taste scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AHI:

Apnea-hypopnea index

BMI:

Body mass index

CT90:

Percentage of time with oxygen saturation below 90%

ESS:

Epworth Sleepiness Questionnaire

LSaO2 :

The lowest oxygen saturation

MoCA:

Montreal Cognitive Assessment

MOD:

Mean arterial oxygen desaturation

MSaO2 :

Mean arterial oxygen saturation

OD:

Odor discrimination

OI:

Odor identification

OSAS:

Obstructive sleep apnea syndrome

PAP:

Positive airway pressure

SF-36:

The MOS 36-item short-form health survey

TDI:

Thresholds-discrimination-identification

THR:

Odor thresholds

References

  1. Terry Y, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–1239. https://doi.org/10.1164/rccm.2109080

    Article  Google Scholar 

  2. Chami HA, Resnick HE, Quan SF, Gottlieb DJ (2011) Association of incident cardiovascular disease with progression of sleep-disordered breathing. Circulation 123:1280–1286. https://doi.org/10.1161/CIRCULATIONAHA.110.974022

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCall WV, Harding D, O’Donovan C (2006) Correlates of depressive symptoms in patients with obstructive sleep apnea. J Clin Sleep Med 2(04):424–426

  4. Salihoğlu M, Kendirli MT, Altundağ A, Tekeli H, Sağlam M, Çayönü M, Şenol MG, Özdağ F (2014) The effect of obstructive sleep apnea on olfactory functions. Laryngoscope 124:2190–2194. https://doi.org/10.1002/lary.24565

    Article  PubMed  Google Scholar 

  5. Günbey E, Güzel A, Karlı R, Ünal R (2015) The relationships between the clinical and polysomnographic findings and the olfactory function in patients with obstructive sleep apnea syndrome. Sleep Breath 19:1301–1307. https://doi.org/10.1007/s11325-015-1165-3

    Article  PubMed  Google Scholar 

  6. Walliczek-Dworschak U, Cassel W, Mittendorf L, Pellegrino R, Koehler U, Güldner C, Dworschak POG, Hildebrandt O, Daniel H, Günzel T, Teymoortash A, Hummel T (2017) Continuous positive air pressure improves orthonasal olfactory function of patients with obstructive sleep apnea. Sleep Med 34:24–29. https://doi.org/10.1016/j.sleep.2017.02.018

    Article  PubMed  Google Scholar 

  7. Koseoglu S, Derin S, Yilmaz M, Kutlu G, Sahan M (2017) Does positive airway pressure therapy improve olfactory function? Int Forum Allergy Rhinol 7:557–560. https://doi.org/10.1002/alr.21923

    Article  PubMed  Google Scholar 

  8. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life--an updated review. Chem Senses 39:185–194. https://doi.org/10.1093/chemse/bjt072

    Article  PubMed  Google Scholar 

  9. Skrandies W, Zschieschang R (2015) Olfactory and gustatory functions and its relation to body weight. Physiol Behav 142:1–4. https://doi.org/10.1016/j.physbeh.2015.01.024

    Article  CAS  PubMed  Google Scholar 

  10. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep 14(6):540–545. https://doi.org/10.1093/sleep/14.6.540

    Article  CAS  PubMed  Google Scholar 

  11. Partinen M, Gislason T (1995) Basic Nordic Sleep Questionnaire (BNSQ): a quantitated measure of subjective sleep complaints. J Sleep Res 4:150–155. https://doi.org/10.1111/j.1365-2869.1995.tb00205.x

    Article  CAS  PubMed  Google Scholar 

  12. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, Troester MT, Vaughn BV (2017) AASM scoring manual updates for 2017 (version 2.4). J Clin Sleep Med 13(05):665–666. https://doi.org/10.5664/jcsm.6576

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sateia MJ (2014) International classification of sleep disorders. Chest 146(5):1387–1394. https://doi.org/10.1378/chest.14-0970

    Article  PubMed  Google Scholar 

  14. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243. https://doi.org/10.1007/s00405-006-0173-0

    Article  CAS  PubMed  Google Scholar 

  15. Gudziol H, Hummel T (2007) Normative values for the assessment of gustatory function using liquid tastants. Acta Otolaryngol 127:658–661. https://doi.org/10.1080/00016480600951491

    Article  CAS  PubMed  Google Scholar 

  16. Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–339. https://doi.org/10.1038/nrneurol.2012.80

    Article  CAS  PubMed  Google Scholar 

  17. Rolheiser TM, Fulton HG, Good KP, Fisk JD, Mckelvey JR, Scherfler C, Khan NM, Leslie RA, Robertson HA (2011) Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson’s disease. J Neurol 258:1254–1260. https://doi.org/10.1007/s00415-011-5915-2

    Article  PubMed  Google Scholar 

  18. Daurat A, Huet N, Tiberge M (2010) Metamemory beliefs and episodic memory in obstructive sleep apnea syndrome. Psychol Rep 107:289–302. https://doi.org/10.2466/10.13.20.22.PR0.107.4.289-302

    Article  PubMed  Google Scholar 

  19. Barnes DC, Wilson DA (2014) Sleep and olfactory cortical plasticity. Front Behav Neurosci 8:134. https://doi.org/10.3389/fnbeh.2014.00134

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wallace A, Bucks RS (2013) Memory and obstructive sleep apnea: a meta-analysis. Sleep 36:203. https://doi.org/10.5665/sleep.2374

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lévy P, J-L P, Arnaud C, Tamisier R, J-C B, Dematteis M, Godin-Ribuot D, Ribuot C (2008) Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur Respir J 32:1082–1095. https://doi.org/10.1183/09031936.00013308

    Article  PubMed  Google Scholar 

  22. Daurat A, Foret J, Bretdibat JL, Fureix C, Tiberge M (2008) Spatial and temporal memories are affected by sleep fragmentation in obstructive sleep apnea syndrome. J Clin Exp Neuropsychol 30:91–101. https://doi.org/10.1080/13803390701236116

    Article  PubMed  Google Scholar 

  23. Hedner M, Larsson M, Arnold N, Zucco GM, Hummel T (2010) Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol 32:1062–1067. https://doi.org/10.1080/13803391003683070

    Article  PubMed  Google Scholar 

  24. Larsson M, Finkel D, Pedersen NL (2000) Odor identification: influences of age, gender, cognition, and personality. J Gerontol Ser B Psychol Sci Soc Sci 55:P304–P310. https://doi.org/10.1093/geronb/55.5.p304

    Article  CAS  Google Scholar 

  25. Ferini-Strambi L, Baietto C, Gioia MRD, Castaldi P, Castronovo C, Zucconi M, Cappa SF (2016) Cognitive dysfunction in patients with obstructive sleep apnea (OSA): partial reversibility after continuous positive airway pressure (CPAP). Brain Res Bull 61:87–92. https://doi.org/10.1016/s0361-9230(03)00068-6

    Article  Google Scholar 

  26. Magliulo G, De Vincentiis M, Iannella G, Ciofalo A, Pasquariello B, Manno A, Angeletti D, Polimeni A (2018) Olfactory evaluation in obstructive sleep apnoea patients. Acta Otorhinolaryngol Ital 38:338–345. https://doi.org/10.14639/0392-100X-1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vennemann MM, Hummel T, Berger K (2008) The association between smoking and smell and taste impairment in the general population. J Neurol 255:1121–1126. https://doi.org/10.1007/s00415-008-0807-9

    Article  PubMed  Google Scholar 

  28. Etter JF, Ussher M, Hughes JR (2013) A test of proposed new tobacco withdrawal symptoms. Addiction 108:50–59. https://doi.org/10.1111/j.1360-0443.2012.03981.x

    Article  PubMed  Google Scholar 

  29. Thuerauf N, Kaegler M, Renner B, Barocka A, Kobal G (2000) Specific sensory detection, discrimination, and hedonic estimation of nicotine enantiomers in smokers and nonsmokers: are there limitations in replacing the sensory components of nicotine? J Clin Psychopharmacol 20:472–478. https://doi.org/10.1097/00004714-200008000-00012

    Article  CAS  PubMed  Google Scholar 

  30. Liu G, Zong G, Doty RL, Sun Q (2016) Prevalence and risk factors of taste and smell impairment in a nationwide representative sample of the US population: a cross-sectional study. BMJ Open 6:e13246. https://doi.org/10.1136/bmjopen-2016-013246

    Article  Google Scholar 

  31. Yenigun A, Degirmenci N, Goktas SS, Dogan R, Ozturan O (2019) Investigation of smell and taste function in patients with obstructive sleep apnoea syndrome. J Laryngol Otol 133:376–379. https://doi.org/10.1017/S0022215119000768

    Article  CAS  PubMed  Google Scholar 

  32. Heiser C, Zimmermann I, Sommer JU, Hormann K, Herr RM, Stuck BA (2013) Pharyngeal chemosensitivity in patients with obstructive sleep apnea and healthy subjects. Chem Senses 38:595–603. https://doi.org/10.1093/chemse/bjt031

    Article  CAS  PubMed  Google Scholar 

  33. Kimoff R, Sforza E, Champagne V, Ofiara L, Gendron D (2001) Upper airway sensation in snoring and obstructive sleep apnea. Am J Respir Crit Care Med 164:250–255. https://doi.org/10.1164/ajrccm.164.2.2010012

    Article  CAS  PubMed  Google Scholar 

  34. Henke KG, Sullivan CE (1993) Effects of high-frequency oscillating pressures on upper airway muscles in humans. J Appl Physiol 75:856. https://doi.org/10.1152/jappl.1993.75.2.856

    Article  CAS  PubMed  Google Scholar 

  35. Suratt PM, Dee P, Atkinson RL, Armstrong P, Wilhoit SC (1983) Fluoroscopic and computed tomographic features of the pharyngeal airway in obstructive sleep apnea. Am Rev Respir Dis 127:487–492. https://doi.org/10.1164/arrd.1983.127.4.487

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen AM, Bardow A, Beier Jensen S, Nauntofte B (2010) Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis 8:117–129. https://doi.org/10.1034/j.1601-0825.2002.02851.x

Download references

Acknowledgments

We thank all the patients and the staff from the Department of Otolaryngology and sleep medical center, Beijing Anzhen Hospital, China, who have participated in this study. We also thank Dr. Richard L Doty and Akshay Tangutur (University of Pennsylvania) for proofreading the manuscript.

Funding

The National Natural Science Foundation of China (81870335, 81670903) and the Capital’s Funds for Health Improvement and Research (2018-2-2065) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Fang, F., Zhan, X. et al. The impact of obstructive apnea sleep syndrome on chemical function. Sleep Breath 24, 1549–1555 (2020). https://doi.org/10.1007/s11325-020-02022-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-020-02022-3

Keywords

Navigation