Advertisement

Beneficial effects of adaptive servo-ventilation on natriuretic peptides and diastolic function in acute heart failure patients with preserved ejection fraction and sleep-disordered breathing

  • E. D’Elia
  • P. Ferrero
  • C. Vittori
  • A. Iacovoni
  • A. Grosu
  • M. Gori
  • V. Duino
  • S. Perlini
  • Michele Senni
Sleep Breathing Physiology and Disorders • Short Communication

Abstract

Purpose

Adaptive servo-ventilation (ASV) is a ventilator algorithm able to correct breathing through anticyclic support of breathing in patients with central sleep apnea (CSA). So far, very few data exist regarding the role of ASV on acute heart failure with preserved ejection fraction (HFpEF).

Methods

We performed a single-center prospective, randomized, case-control study in consecutive acute HFpEF (left ventricle ejection fraction, LVEF ≥ 45%) patients with sleep-disordered breathing (SDB, apnea–hypopnea index, AHI > 15/h) and prevalence of CSA.

Results

We included ten consecutive patients randomized for ASV on top of standard therapy for acute heart failure (group 1) versus standard care alone (group 2). ASV therapy significantly reduced AHI and CSA. An improvement in cardiac diastolic function was seen in group 1 compared to group 2 (E/E’ 17.5 to 9.6, p < 0.02 vs 18.5 to 14.5, p = 0.4). Brain natriuretic peptide (BNP) markedly decreased in cases, but not in controls (298 to 84 pg/ml, p < 0.02 vs 280 to 120 pg/ml, p = 0.06). Right ventricle (RV) function significantly improved in group 1, differently from group 2.

Conclusions

An acute use of ASV seems effective in reducing BNP and improving diastolic and RV function in acute HFpEF patients with SDB and CSA, compared to standard treatment.

Keywords

Heart failure with preserved ejection fraction Central sleep apnea Diastolic function Right ventricle Adaptive servo-ventilation 

Notes

Acknowledgements

We would like to thank FROM (Fondazione per la Ricerca Ospedale di Bergamo) and Dr. A. Gavazzi for his clinical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Komajda M, Lam CS (2014) Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J 35:1022–1032CrossRefPubMedGoogle Scholar
  2. 2.
    Senni M, Paulus WJ, Gavazzi A, Fraser AG, Diez J, Solomon SD, Smiseth OA, Guazzi M, Lam CSP, Maggioni AP, Tschope C, Metra M, Hummel SL, Edelmann F, Ambrosio G, Stewart Coats AJ, Filippatos GS, Gheorghiade M, Anker SD, Levy D, Pfeffer MA, Stough WG, Pieske BM (2014) New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J 35:2797–2815CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fox H, Purucker HC, Holzhacker I, Tebtmann U, Bitter T, Horstkotte D, Graml A, Woehrle H, Oldenburg O (2016) Prevalence of sleep-disordered breathing and patient characteristics in a coronary artery disease cohort undergoing cardiovascular rehabilitation. J Cardiopulm Rehabil Prev 36:421–429CrossRefPubMedGoogle Scholar
  4. 4.
    Arzt M, Woehrle H, Oldenburg O, Graml A, Suling A, Erdmann E, Teschler H, Wegscheider K, SchlaHF Investigators (2016) Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the SchlaHF Registry. JACC Heart Fail 4:116–125CrossRefPubMedGoogle Scholar
  5. 5.
    D’Elia E, Ferrero P, Vittori C et al (2016) Enhanced adaptive servo ventilation improves echocardiographic parameters of diastolic and right ventricle function in patients with sleep apnea and heart failure with preserved ejection fraction. Eur J Heart Fail Abstracts Supplements 18(Supplement 1):474Google Scholar
  6. 6.
    Oldenburg O, Fox H, Wellmann B, Thiem U, Horstkotte D, Bitter T (2017) Automatic positive airway pressure for treatment of obstructive sleep apnea in heart failure. Somnologie 21:273–280CrossRefGoogle Scholar
  7. 7.
    Oldenburg O, Fox H, Bitter T, Horstkotte D (2017) Adaptive servoventilation to treat sleep-disordered breathing in cardiac patients. Somnologie 21:82–83CrossRefGoogle Scholar
  8. 8.
    Yoshihisa A, Suzuki S, Yamaki T, Sugimoto K, Kunii H, Nakazato K, Suzuki H, Saitoh SI, Takeishi Y (2013) Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail 15:543–550CrossRefPubMedGoogle Scholar
  9. 9.
    O'Connor CM, Whellan DJ, Fiuzat M et al (2017) Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart failure: the CAT-HF trial. J Am Coll Cardiol 69:1577–1587CrossRefPubMedGoogle Scholar
  10. 10.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lattimore JL, Wilcox I, Skilton M, Langenfeld M, Celermajer DS (2006) Treatment of obstructive sleep apnea leads to improved microvascular endothelial function in the systemic circulation. Thorax 61:491–495CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Drager LF, Diegues-Silva L, Diniz PM, Bortolotto LA, Pedrosa RP, Couto RB, Marcondes B, Giorgi DMA, Lorenzi-Filho G, Krieger EM (2010) Obstructive sleep apnea, masked hypertension, and arterial stiffness in men. Am J Hypertens 23:249–254CrossRefPubMedGoogle Scholar
  13. 13.
    Bitter T, Faber L, Hering D, Langer C, Horstkotte D, Oldenburg O (2009) Sleep disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Fail 11:602–609CrossRefPubMedGoogle Scholar
  14. 14.
    Bitter T, Westerheide N, Faber L, Hering D, Prinz C, Langer C, Horstkotte D, Oldenburg O (2010) Adaptive servoventilation in diastolic heart failure and Cheyne-Stokes respiration. Eur Respir J 36:385–392CrossRefPubMedGoogle Scholar
  15. 15.
    Yogasundaram H, Oudit GY (2015) Increased mortality associated with adaptive servo ventilation therapy in heart failure patients with central sleep apnea in the halted SERVE-HF trial. Can J Cardiol 31:1202–1203CrossRefPubMedGoogle Scholar
  16. 16.
    Javaheri S, Brown LK, Randerath W, Khayat R (2016) SERVE-HF: more question than answer. Chest 194:900–904CrossRefGoogle Scholar
  17. 17.
    Linz D, Fox H, Bitter T, Spießhöfer J, Schöbel C, Skobel E, Türoff A, Böhm M, Cowie MR, Arzt M, Oldenburg O (2016) Impact of SERVE_HF on management of sleep disordered breathing in heart failure: a call for further studies. Clin Res Cardiol 105:563–570CrossRefPubMedGoogle Scholar
  18. 18.
    Hall AB, Ziadi MC, Leech JA, Chen SY, Burwash IG, Renaud J, deKemp RA, Haddad H, Mielniczuk LM, Yoshinaga K, Guo A, Chen L, Walter O, Garrard L, DaSilva JN, Floras JS, Beanlands RSB (2014) Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study. Circulation 130:892–901CrossRefPubMedGoogle Scholar
  19. 19.
    Kasai T, Kasagi S, Maeno K, Dohi T, Kawana F, Kato M, Naito R, Ishiwata S, Ohno M, Yamaguchi T, Narui K, Momomura SI (2013) Adaptive servo-ventilation in cardiac function and neurohormonal status in patients with heart failure and central sleep apnea nonresponsive to continuous positive airway pressure. JACC Heart Fail 1:58–63CrossRefPubMedGoogle Scholar
  20. 20.
    Butler J, Hamo CE, Udelson JE, Pitt B, Yancy C, Shah SJ, Desvigne-Nickens P, Bernstein HS, Clark RL, Depre C, Dinh W, Hamer A, Kay-Mugford P, Kramer F, Lefkowitz M, Lewis K, Maya J, Maybaum S, Patel MJ, Pollack PS, Roessig L, Rotman S, Salsali A, Sims JJ, Senni M, Rosano G, Dunnmon P, Stockbridge N, Anker SD, Zile MR, Gheorghiade M (2016) Exploring new endpoints for heart failure with preserved ejection fraction. Circ Heart Fail 9:e003358CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • E. D’Elia
    • 1
    • 2
  • P. Ferrero
    • 1
  • C. Vittori
    • 1
  • A. Iacovoni
    • 1
  • A. Grosu
    • 1
  • M. Gori
    • 1
  • V. Duino
    • 1
  • S. Perlini
    • 2
  • Michele Senni
    • 1
  1. 1.Cardiology Division, Cardiovascular DepartmentPapa Giovanni XXIII HospitalBergamoItaly
  2. 2.Clinica Medica 2 Internal Medicine Department IRCCS San MatteoUniversity of PaviaPaviaItaly

Personalised recommendations