Molecular Imaging and Biology

, Volume 21, Issue 2, pp 193–199 | Cite as

Summary of Imaging in 2020: Visualizing the Future of Healthcare with MR Imaging

  • Brooke A. Corbin
  • Alyssa C. Pollard
  • Matthew J. AllenEmail author
  • Mark D. PagelEmail author
Special Topic


The Imaging in 2020 meeting convenes biannually to discuss innovations in medical imaging. The 2018 meeting, titled “Visualizing the Future of Healthcare with MR Imaging,” sought to encourage discussions of the future goals of MRI research, feature important discoveries, and foster scientific discourse between scientists from a variety of fields of expertise. Here, we highlight presented research and resulting discussions of the meeting.

Key words

CEST Contrast agent Gadolinium Imaging MRI PET–MRI 



On behalf of the participants of the Imaging in 2020 meeting in 2018, we would like to thank Lisa Baird, Sylvia Anderson, and the staff of the World Molecular Imaging Society for participating in organizing and administering the meeting.


The meeting would not have been possible without generous support from Bracco Imaging; Bruker BioSpin Corporation; Case Western Reserve University Department of Biomedical Engineering; Cubresa, Inc.; GE Healthcare; Magnetic Insight, Inc.; Northwestern University; Osaka University; Pharmacyclics LLC; Royal Philips; the University of Texas MD Anderson Cancer Center; and Wayne State University College of Liberal Arts and Sciences. The meeting was supported by NIH grant R13 CA232377-01. ACP is supported by NIH grant T32CA196561.

Compliance with Ethical Standards

Conflict of Interest

MDP has a relationship with Bristol Myers Squibb, Inc.


  1. 1. Accessed 26 Nov 2018
  2. 2.
    Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2018) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev.
  3. 3.
    Helm L, Morrow JR, Bond CJ et al (2018) Gadolinium-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI: experimental methods. The Royal Society of Chemistry, Croydon, pp 121–242Google Scholar
  4. 4.
    Young SW, Qing F, Harriman A, Sessler JL et al (1996) Gadolinium (III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc Natl Acad Sci U S A 93:6610–6615CrossRefGoogle Scholar
  5. 5.
    Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8CrossRefGoogle Scholar
  6. 6.
    Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefGoogle Scholar
  7. 7.
    Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefGoogle Scholar
  8. 8.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefGoogle Scholar
  9. 9.
    McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefGoogle Scholar
  10. 10.
    Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275:630–634CrossRefGoogle Scholar
  11. 11.
    Grobner T (2006) Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefGoogle Scholar
  12. 12.
    Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014:741018Google Scholar
  13. 13.
    Thomsen HS (2009) Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin N Am 47:827–831CrossRefGoogle Scholar
  14. 14.
    Wilson J, Gleghorn K, Seigel Q, Kelly B (2017) Nephrogenic systemic fibrosis: a 15-year retrospective study at a single tertiary care center. J Am Acad Dermatol 77:235–240CrossRefGoogle Scholar
  15. 15.
    Wang Y, Alkasab TK, Narin O et al (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260:105–111CrossRefGoogle Scholar
  16. 16.
    Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481CrossRefGoogle Scholar
  17. 17.
    Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648CrossRefGoogle Scholar
  18. 18.
    Idée J-M, Port M, Raynal I et al (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563–576CrossRefGoogle Scholar
  19. 19.
    Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30:1240–1248CrossRefGoogle Scholar
  20. 20.
    Frenzel T, Lengsfeld P, Schirmer H et al (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Investig Radiol 43:817–828CrossRefGoogle Scholar
  21. 21.
    Cai J, Shapiro EM, Hamilton AD (2009) Self-assembling DNA quadruplex conjugated to MRI contrast agents. Bioconjug Chem 20:205–208CrossRefGoogle Scholar
  22. 22.
    Caravan P, Das B, Dumas S et al (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed 46:8171–8173CrossRefGoogle Scholar
  23. 23.
    Farrar CT, DePeralta DK, Day H et al (2015) 3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model. J Hepatol 63:689–696CrossRefGoogle Scholar
  24. 24.
    Pu F, Qiao J, Xue S et al (2015) GRPR-targeted protein contrast agents for molecular imaging of receptor expression in cancers by MRI. Sci Rep 5:16214CrossRefGoogle Scholar
  25. 25.
    Boros E, Gale EM, Caravan P (2015) MR imaging probes: design and applications. Dalton Trans 44:4804–4818CrossRefGoogle Scholar
  26. 26.
    Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927CrossRefGoogle Scholar
  27. 27.
    Loehr JA, Stinnett GR, Hernández-Rivera M et al (2016) Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging. J Physiol 594:6395–6405CrossRefGoogle Scholar
  28. 28.
    Gale EM, Mukherjee S, Liu C et al (2014) Structure–redox–relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes. Inorg Chem 53:10748–10761CrossRefGoogle Scholar
  29. 29.
    Gale EM, Atanasova IP, Blasi F et al (2015) A manganese alternative to gadolinium for MRI contrast. J Am Chem Soc 137:15548–15557CrossRefGoogle Scholar
  30. 30.
    Gale EM, Caravan P (2018) Gadolinium-free contrast agents for magnetic resonance imaging of the central nervous system. ACS Chem Neurosci 9:395–397CrossRefGoogle Scholar
  31. 31.
    Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17:544–553CrossRefGoogle Scholar
  32. 32.
    Jiang Y, Zheng W, Long L et al (2007) Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure. NeuroToxicology 28:126–135CrossRefGoogle Scholar
  33. 33.
    Finney K-LNA, Harnden AC, Rogers NJ et al (2017) Simultaneous triple imaging with two PARASHIFT probes: encoding anatomical, pH and temperature information using magnetic resonance shift imaging. Chem Eur J 23:7976–7989CrossRefGoogle Scholar
  34. 34.
    Bleaney B (1972) Nuclear magnetic resonance shifts of solution due to lanthanide ions. J Magn Reson 8:91–100Google Scholar
  35. 35.
    Suturina EA, Mason K, Geraldes CFGC et al (2017) Beyond Bleaney’s theory: experimental and theoretical analysis of periodic trends in lanthanide-induced chemical shift. Angew Chem Int Ed 56:12215–12218CrossRefGoogle Scholar
  36. 36.
    Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87CrossRefGoogle Scholar
  37. 37.
    Thorarinsdottir AE, Du K, Collins JHP, Harris TD (2017) Ratiometric pH imaging with a CoII 2 MRI probe via CEST effects of opposing pH dependences. J Am Chem Soc 139:15836–15847CrossRefGoogle Scholar
  38. 38.
    Jeon I-R, Park JG, Haney CR, Harris TD (2014) Spin crossover iron (II) complexes as PARACEST MRI thermometers. Chem Sci 5:2461–2465CrossRefGoogle Scholar
  39. 39.
    Du K, Harris TD (2016) A CuII 2 paramagnetic chemical exchange saturation transfer contrast agent enabled by magnetic exchange coupling. J Am Chem Soc 138:7804–7807CrossRefGoogle Scholar
  40. 40.
    van Zijl PCM, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65:927–948CrossRefGoogle Scholar
  41. 41.
    Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefGoogle Scholar
  42. 42.
    Zhou J, Payen J-F, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefGoogle Scholar
  43. 43.
    Cai K, Haris M, Singh A et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–307CrossRefGoogle Scholar
  44. 44.
    Haris M, Singh A, Cai K et al (2014) A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med 20:209–215CrossRefGoogle Scholar
  45. 45.
    Stares E, Rho J, Ahrens ET et al (2018) Fluorine-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI. The Royal Society of Chemistry, Croyden, pp 479–498Google Scholar
  46. 46.
    Akazawa K, Sugihara F, Nakamura T et al (2018) Highly sensitive detection of caspase-3/7 activity in living mice using enzyme-responsive 19F MRI Nanoprobes. Bioconjug Chem 29:1720–1728CrossRefGoogle Scholar
  47. 47.
    Schmeider AH, Caruthers SD, Keupp J et al (2015) Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering 1:475–489CrossRefGoogle Scholar
  48. 48.
    Basal LA, Bailey MD, Romero J et al (2017) Fluorinated Eu (II)-based multimodal contrast agent for temperature- and redox-responsive magnetic resonance imaging. Chem Sci 8:8345–8350CrossRefGoogle Scholar
  49. 49.
    Srivastava K, Ferrauto G, Young VG Jr et al (2017) Eight-coordinate, stable Fe (II) complex as a dual 19F and CEST contrast agent for ratiometric pH imaging. Inorg Chem 56:12206–12213CrossRefGoogle Scholar
  50. 50.
    Akazawa K, Sugihara F, Minoshima M et al (2018) Sensing caspase-1 activity using activatable 19F MRI nanoprobes with improved turn-on kinetics. Chem Commun 54:11785–11788CrossRefGoogle Scholar
  51. 51.
    Nikolaou P, Goodson BM, Chekmenev EY (2015) NMR hyperpolarization techniques for biomedicine. Chem Eur J 21:3156–3166CrossRefGoogle Scholar
  52. 52.
    Ardenkjæ-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163CrossRefGoogle Scholar
  53. 53.
    Kettunen MI, Kennedy BWC, Hu D-E, Brindle KM (2013) Spin echo measurements of the extravasation and tumor cell uptake of hyperpolarized [1-13C] lactate and [1-13C]pyruvate. Magn Reson Med 70:1200–1209CrossRefGoogle Scholar
  54. 54.
    Bankson JA, Walker CM, Ramirez MS et al (2015) Kinetic modeling and constrained reconstruction of hyperpolarized [1-13C]-pyruvate offers improved metabolic imaging of tumors. Cancer Res 75:4708–4717CrossRefGoogle Scholar
  55. 55.
    Walker CM, Chen Y, Lai SY, Bankson JA (2016) A novel perfused Bloch–McConnell simulator for analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43:854–864CrossRefGoogle Scholar
  56. 56.
    Rodrigues TB, Serrao EM, Kennedy BWC et al (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20:93–97CrossRefGoogle Scholar
  57. 57.
    Allouche-Arnon H, Lerche MH, Karlsson M et al (2011) Deuteration of a molecular probe for DNP hyperpolarization – a new approach and validation for choline chloride. Contrast Media Mol Imaging 6:499–506CrossRefGoogle Scholar
  58. 58.
    Ma D, Gulani V, Seiberlich N et al (2013) Magnetic resonance fingerprinting. Nature 485:187–192CrossRefGoogle Scholar
  59. 59.
    Hamilton JI, Jiang Y, Ma D et al (2018) Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging 53:40–51CrossRefGoogle Scholar
  60. 60.
    Mehta BB, Coppo S, McGivney DF et al (2018) Magnetic resonance fingerprinting: a technical review. Magn Reson Med 2018:1–22Google Scholar
  61. 61.
    Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Preclinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36:S56–S68CrossRefGoogle Scholar
  62. 62.
    Catana C, Drzezga A, Heiss W-D, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925CrossRefGoogle Scholar
  63. 63.
    Wehrl HF, Martirosian P, Schick F, Reischl G, Pichler BJ (2014) Assessment of rodent brain activity using combined [15O]H2O-PET and BOLD-fMRI. NeuroImage 89:271–279CrossRefGoogle Scholar
  64. 64.
    Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1190CrossRefGoogle Scholar
  65. 65.
    Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883CrossRefGoogle Scholar
  66. 66.
    Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217CrossRefGoogle Scholar
  67. 67.
    Knopp T, Conolly SM, Buzug TM (2017) Recent progress in magnetic particle imaging: from hardware to preclinical applications. Phys Med Biol 62:E4–E7CrossRefGoogle Scholar
  68. 68.
    Zhou XY, Jeffris KE, Yu EY et al (2017) First in vivo magnetic particle imaging of lung perfusion in rats. Phys Med Biol 62:3510–3522CrossRefGoogle Scholar
  69. 69.
    Kim E, Zhang J, Hong K et al (2011) Vascular phenotyping of brain tumors using magnetic resonance microscopy (μMRI). J Cereb Blood Flow Metab 31:1623–1636CrossRefGoogle Scholar
  70. 70.
    Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637CrossRefGoogle Scholar
  71. 71.
    Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of human white matter connectivity. NeuroImage 54:1262–1279CrossRefGoogle Scholar
  72. 72.
    Snyder ALS, Corum CA, Moeller S, Powell NJ, Garwood M (2014) MRI by steering resonance through space. Magn Reson Med 72:49–58CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryWayne State UniversityDetroitUSA
  2. 2.Department of ChemistryRice UniversityHoustonUSA
  3. 3.Department of Cancer Systems ImagingThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations