Molecular Imaging and Biology

, Volume 21, Issue 2, pp 200–218 | Cite as

Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation

  • Madeline T. Olson
  • Quan P. Ly
  • Aaron M. MohsEmail author
Review Article


Surgical resection continues to function as the primary treatment option for most solid tumors. However, the detection of cancerous tissue remains predominantly subjective and reliant on the expertise of the surgeon. Surgery that is guided by fluorescence imaging has shown clinical relevance as a new approach to detecting the primary tumor, tumor margins, and metastatic lymph nodes. It is a technique to reduce recurrence and increase the possibility of a curative resection. While significant progress has been made in developing this emerging technology as a tool to assist the surgeon, further improvements are still necessary. Refining imaging agents and tumor targeting strategies to be a precise and reliable surgical strategy is essential in order to translate this technology into patient care settings. This review seeks to provide a comprehensive update on the most recent progress of fluorescence-guided surgery and its translation into the clinic. By highlighting the current status and recent developments of fluorescence image-guided surgery in the field of surgical oncology, we aim to offer insight into the challenges and opportunities that require further investigation.

Key words

Image-guided surgery Optical surgical navigation Surgical oncology Fluorescence Optical contrast agents 



This work was supported in part by the National Institutes of Health [grant numbers R01EB019449, R00CA153916, P20 GM103480, and P30CA036727 (Fred and Pamela Buffett Cancer Center at UNMC)], the Nebraska Cattlemen’s Ball Development Fund, and the Nebraska Research Initiative.

Compliance with Ethical Standards

Conflict of Interest

A.M.M. is a co-inventor of image-guided surgery technology that is licensed to Spectropath, Inc. (Atlanta, GA).


  1. 1.
    Stewart B, Wild C (2014) World cancer report 2014. International Agency for Research on CancerGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30Google Scholar
  3. 3.
    Orosco RK, Tsien RY, Nguyen QT (2013) Fluorescence imaging in surgery. IEEE Rev Biomed Eng 6:178–187Google Scholar
  4. 4.
    Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat Rev Cancer 13:653–662Google Scholar
  5. 5.
    Keating J, Tchou J, Okusanya O, Fisher C, Batiste R, Jiang J, Kennedy G, Nie S, Singhal S (2016) Identification of breast cancer margins using intraoperative near-infrared imaging. J Surg Oncol 113:508–514Google Scholar
  6. 6.
    Madajewski B, Judy BF, Mouchli A, Kapoor V, Holt D, Wang MD, Nie S, Singhal S (2012) Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res 18:5741–5751Google Scholar
  7. 7.
    Narod S (2016) Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol 13:255–261Google Scholar
  8. 8.
    Witkowski ER, Smith JK, Tseng JF (2013) Outcomes following resection of pancreatic cancer. J Surg Oncol 107:97–103Google Scholar
  9. 9.
    Shaib Y, Davila J, Naumann C, El-Serag H (2007) The impact of curative intent surgery on the survival of pancreatic Cancer patients: a U.S. population-based study. Am J Gastroenterol 102:1377–1382Google Scholar
  10. 10.
    Rossi ML, Rehman AA, Gondi CS (2014) Therapeutic options for the management of pancreatic cancer. World J Gastroenterol 20:11142–11159Google Scholar
  11. 11.
    Tamburrino D, Partelli S, Crippa S, Manzoni A, Maurizi A, Falconi M (2014) Selection criteria in resectable pancreatic cancer: a biological and morphological approach. World J Gastroenterol 20:11210–11215Google Scholar
  12. 12.
    Hidalgo M (2010) Pancreatic Cancer. N Engl J Med 362:1605–1617Google Scholar
  13. 13.
    Nick AM, Coleman RL, Ramirez PT, Sood AK (2015) A framework for a personalized surgical approach to ovarian cancer. Nat Rev Clin Oncol 12:239–245Google Scholar
  14. 14.
    Sehouli J, Grabowski JP (2017) Surgery for recurrent ovarian cancer: options and limits. Best Pract Res Clin Obstet Gynaecol 41:88–95Google Scholar
  15. 15.
    Liberale G, Vankerckhove S, Gomez Caldon M et al (2016) Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg 264:1110–1115Google Scholar
  16. 16.
    Hoogstins CE, Weixler B, Boogerd LS et al (2017) In search for optimal targets for intraoperative fluorescence imaging of peritoneal metastasis from colorectal cancer. Biomark Cancer 9:1179299X1772825Google Scholar
  17. 17.
    Barth CW, Gibbs SL (2017) Direct administration of nerve-specific contrast to improve nerve sparing radical prostatectomy. Theranostics 7:573–593Google Scholar
  18. 18.
    Gibbs-Strauss SL, Nasr K, Fish KM, Khullar O, Ashitate Y, Siclovan TM, Johnson BF, Barnhardt NE, Tan Hehir CA, Frangioni JV (2011) Nerve-highlighting fluorescent contrast agents for image-guided surgery. Mol Imaging 10:91–101Google Scholar
  19. 19.
    Hussain T, Mastrodimos MB, Raju SC, Glasgow HL, Whitney M, Friedman B, Moore JD, Kleinfeld D, Steinbach P, Messer K, Pu M, Tsien RY, Nguyen QT (2015) Fluorescently labeled peptide increases identification of degenerated facial nerve branches during surgery and improves functional outcome. PLoS One 10:e0119600Google Scholar
  20. 20.
    Hussain T, Nguyen LT, Whitney M, Hasselmann J, Nguyen QT (2016) Improved facial nerve identification during parotidectomy with fluorescently labeled peptide. Laryngoscope 126:2711–2717Google Scholar
  21. 21.
    Whitney MA, Crisp JL, Nguyen LT, Friedman B, Gross LA, Steinbach P, Tsien RY, Nguyen QT (2011) Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol 29:352–356Google Scholar
  22. 22.
    He K, Zhou J, Yang F, Chi C, Li H, Mao Y, Hui B, Wang K, Tian J, Wang J (2018) Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics 8:304–313Google Scholar
  23. 23.
    Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:10Google Scholar
  24. 24.
    Ferraro N, Barbarite E, Albert TR, Berchmans E, Shah AH, Bregy A, Ivan ME, Brown T, Komotar RJ (2016) The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg Rev 39:545–555Google Scholar
  25. 25.
    Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Shi C, Liu Y, Teng L, Han D, Chen X, Yang G, Wang L, Shen C, Li H (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid–induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS One 8:e63682Google Scholar
  26. 26.
    Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77:663–673Google Scholar
  27. 27.
    Moiyadi A, Syed P, Srivastava S (2014) Fluorescence-guided surgery of malignant gliomas based on 5-aminolevulinic acid: paradigm shifts but not a panacea. Nat Rev Cancer 14:146–146Google Scholar
  28. 28.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013Google Scholar
  29. 29.
    Stummer W, Tonn J-C, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319 20Google Scholar
  30. 30.
    Thevarajah S, Huston TL, Simmons RM (2005) A comparison of the adverse reactions associated with isosulfan blue versus methylene blue dye in sentinel lymph node biopsy for breast cancer. Am J Surg 189:236–239Google Scholar
  31. 31.
    Kidd SA, Lancaster PAL, Anderson JC et al (1996) Fetal death after exposure to methylene blue dye during mid-trimester amniocentesis in twin pregnancy. Prenat Diagn 16:39–47Google Scholar
  32. 32.
    Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, Eliceiri KW, Kuo JS, Weichert JP (2017) Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 14:347–364Google Scholar
  33. 33.
    Verbeek FPR, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, van de Velde CJH, Frangioni JV, Vahrmeijer AL (2013) Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J Urol 190:574–579Google Scholar
  34. 34.
    Dip FD, Moreira Grecco AD, Nguyen D, Sarotto L, Perrins S, Rosenthal RJ (2015) Ureter identification using methylene blue and fluorescein. In: Fluorescence imaging for surgeons. Springer International Publishing, Cham, pp 327–332Google Scholar
  35. 35.
    Seif C, Martínez Portillo FJ, Osmonov DK, Böhler G, van der Horst C, Leissner J, Hohenfellner R, Juenemann KP, Braun PM (2004) Methylene blue staining for nerve-sparing operative procedures: an animal model. Urology 63:1205–1208Google Scholar
  36. 36.
    Osorio JA, Breshears JD, Arnaout O, Simon NG, Hastings-Robinson AM, Aleshi P, Kliot M (2015) Ultrasound-guided percutaneous injection of methylene blue to identify nerve pathology and guide surgery. Neurosurg Focus 39:E2Google Scholar
  37. 37.
    Candell L, Campbell MJ, Shen WT, Gosnell JE, Clark OH, Duh QY (2014) Ultrasound-guided methylene blue dye injection for parathyroid localization in the reoperative neck. World J Surg 38:88–91Google Scholar
  38. 38.
    Kir G, Alimoglu O, Sarbay BC, Bas G (2014) Ex vivo intra-arterial methylene blue injection in the operation theater may improve the detection of lymph node metastases in colorectal cancer. Pathol Res Pract 210:818–821Google Scholar
  39. 39.
    Tummers QRJG, Schepers A, Hamming JF, Kievit J, Frangioni JV, van de Velde CJH, Vahrmeijer AL (2015) Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose methylene blue. Surgery 158:1323–1330Google Scholar
  40. 40.
    van der Vorst JR, Schaafsma BE, Verbeek FPR, Swijnenburg RJ, Tummers QRJG, Hutteman M, Hamming JF, Kievit J, Frangioni JV, van de Velde CJH, Vahrmeijer AL (2014) Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue. Head Neck 36:853–858Google Scholar
  41. 41.
    van der Vorst JR, Vahrmeijer AL, Hutteman M, Bosse T, Smit VT, van de Velde C, Frangioni JV, Bonsing BA (2012) Near-infrared fluorescence imaging of a solitary fibrous tumor of the pancreas using methylene blue. World J Gastrointest Surg 4:180–184Google Scholar
  42. 42.
    Chu M, Wan Y (2009) Sentinel lymph node mapping using near-infrared fluorescent methylene blue. J Biosci Bioeng 107:455–459Google Scholar
  43. 43.
    Schaafsma BE, Mieog JSD, Hutteman M, van der Vorst JR, Kuppen PJK, Löwik CWGM, Frangioni JV, van de Velde CJH, Vahrmeijer AL (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104:323–332Google Scholar
  44. 44.
    Marshall MV, Rasmussen JC, Tan I-C, Aldrich MB, Adams KE, Wang X, Fife CE, Maus EA, Smith LA, Sevick-Muraca EM (2010) Near-infrared fluorescence imaging in humans with Indocyanine green: a review and update. Open Surg Oncol J 2:12–25Google Scholar
  45. 45.
    Namikawa T, Sato T, Hanazaki K (2015) Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg Today 45:1467–1474Google Scholar
  46. 46.
    Pitsinis V, Provenzano E, Kaklamanis L, Wishart GC, Benson JR (2015) Indocyanine green fluorescence mapping for sentinel lymph node biopsy in early breast cancer. Surg Oncol 24:375–379Google Scholar
  47. 47.
    Sugie T, Kassim KA, Takeuchi M, Hashimoto T, Yamagami K, Masai Y, Toi M (2010) A novel method for sentinel lymph node biopsy by indocyanine green fluorescence technique in breast cancer. Cancers (Basel) 2:713–720Google Scholar
  48. 48.
    Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10:507–518Google Scholar
  49. 49.
    Hill TK, Abdulahad A, Kelkar SS, Marini FC, Long TE, Provenzale JM, Mohs AM (2015) Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem 26:294–303Google Scholar
  50. 50.
    Kraft JC, Ho RJY (2014) Interactions of Indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in Vivo. Biochemistry 53:1275–1283Google Scholar
  51. 51.
    Moore LS, Rosenthal EL, Chung TK, de Boer E, Patel N, Prince AC, Korb ML, Walsh EM, Young ES, Stevens TM, Withrow KP, Morlandt AB, Richman JS, Carroll WR, Zinn KR, Warram JM (2017) Characterizing the utility and limitations of repurposing an open-field optical imaging device for fluorescence-guided surgery in head and neck Cancer patients. J Nucl Med 58:246–251Google Scholar
  52. 52.
    Korb ML, Hartman YE, Kovar J et al (2014) Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer HHS public access. J Surg Res 111:119–128Google Scholar
  53. 53.
    Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, Strong TV, Schmalbach CE, Morlandt AB, Agarwal G, Hartman YE, Carroll WR, Richman JS, Clemons LK, Nabell LM, Zinn KR (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666Google Scholar
  54. 54.
    Tansi FL, Rüger R, Rabenhold M, et al (2015) Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging. J Vis Exp e52136Google Scholar
  55. 55.
    Lisy M-R, Goermar A, Thomas C, Pauli J, Resch-Genger U, Kaiser WA, Hilger I (2008) In vivo near-infrared fluorescence imaging of carcinoembryonic antigen–expressing tumor cells in mice. Radiology 247:779–787Google Scholar
  56. 56.
    Pauli J, Brehm R, Spieles M, Kaiser WA, Hilger I, Resch-Genger U (2010) Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging. J Fluoresc 20:681–693Google Scholar
  57. 57.
    Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138Google Scholar
  58. 58.
    Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24:812–827Google Scholar
  59. 59.
    Lu Y, Su Y, Zhou Y, et al (2013) In vivo behavior of near infrared-emitting quantum dots. doi:
  60. 60.
    Moore GE, Peyton WT, French LA, Walker WW (1948) The clinical use of fluorescein in neurosurgery. J Neurosurg 5:392–398Google Scholar
  61. 61.
    Dilek O, Ihsan A, Tulay H (2011) Anaphylactic reaction after fluorescein sodium administration during intracranial surgery. J Clin Neurosci 18:430–431Google Scholar
  62. 62.
    Tanahashi S, Iida H, Dohi S (1995) An anaphylactoid reaction after administration of fluorescein sodium during neurosurgery. Can J Anaesth 42:181–185Google Scholar
  63. 63.
    Mondal SB, Gao S, Zhu N et al (2014) Real-time fluorescence image-guided oncologic surgery. Adv Cancer Res 124:171–211Google Scholar
  64. 64.
    Ji X, Peng F, Zhong Y, Su Y, He Y (2014) Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surfaces B Biointerfaces 124:132–139Google Scholar
  65. 65.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240Google Scholar
  66. 66.
    Hill TK, Mohs AM (2016) Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:498–511Google Scholar
  67. 67.
    Gioux S, Kianzad V, Ciocan R, Gupta S, Oketokoun R, Frangioni JV (2009) High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery. Mol Imaging 8:156–165Google Scholar
  68. 68.
    Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255Google Scholar
  69. 69.
    DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901Google Scholar
  70. 70.
    Zhu B, Sevick-Muraca EM (2015) A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol 88:20140547Google Scholar
  71. 71.
    Matsumura Y, Maeda H, Jain RK et al (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  72. 72.
    Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25Google Scholar
  73. 73.
    Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 23:173–182Google Scholar
  74. 74.
    Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J (2014) The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int 14:41Google Scholar
  75. 75.
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151Google Scholar
  76. 76.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257Google Scholar
  77. 77.
    Bergers G, Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410Google Scholar
  78. 78.
    Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000Google Scholar
  79. 79.
    Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886Google Scholar
  80. 80.
    Sriraman SK, Aryasomayajula B, Torchilin VP (2014) Barriers to drug delivery in solid tumors. Tissue Barriers 2:e29528Google Scholar
  81. 81.
    Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164:138–144Google Scholar
  82. 82.
    Nakamura H, Etrych T, Chytil P, Ohkubo M, Fang J, Ulbrich K, Maeda H (2014) Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J Control Release 174:81–87Google Scholar
  83. 83.
    Kobayashi H, Watanabe R, Choyke PL (2013) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4:81–89Google Scholar
  84. 84.
    Nakamura Y, Mochida A, Choyke PL, Kobayashi H (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27:2225–2238Google Scholar
  85. 85.
    Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664Google Scholar
  86. 86.
    Padera TP, Stoll BR, Tooredman JB, Capen D, Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695–695Google Scholar
  87. 87.
    Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346Google Scholar
  88. 88.
    Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer 4:806–813Google Scholar
  89. 89.
    Baxter LT, Jain’ RK (1989) Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc Res 37:77–104Google Scholar
  90. 90.
    Wu M, Frieboes HB, Chaplain MAJ, McDougall SR, Cristini V, Lowengrub JS (2014) The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J Theor Biol 355:194–207Google Scholar
  91. 91.
    Miao L, Lin CM, Huang L (2015) Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release 219:192–204Google Scholar
  92. 92.
    May JP, Li S-D (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10:511–527Google Scholar
  93. 93.
    Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving Intratumoral accumulation and distribution of nanomedicines. Theranostics 5:1007–1020Google Scholar
  94. 94.
    Ojha T, Pathak V, Shi Y, et al (2017) Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Advanced Drug Delivery Reviews 119:44–60Google Scholar
  95. 95.
    Yokoi K, Tanei T, Godin B, van de Ven AL, Hanibuchi M, Matsunoki A, Alexander J, Ferrari M (2014) Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett 345:48–55Google Scholar
  96. 96.
    Yokoi K, Kojic M, Milosevic M, Tanei T, Ferrari M, Ziemys A (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246Google Scholar
  97. 97.
    Bolkestein M, de Blois E, Koelewijn SJ, Eggermont AMM, Grosveld F, de Jong M, Koning GA (2016) Investigation of factors determining the enhanced permeability and retention effect in subcutaneous xenografts. J Nucl Med 57:601–607Google Scholar
  98. 98.
    Miller J, Wang ST, Orukari I, Prior J, Sudlow G, Su X, Liang K, Tang R, Hillman EMC, Weilbaecher KN, Culver JP, Berezin MY, Achilefu S (2017) Perfusion-based fluorescence imaging method delineates diverse organs and identifies multifocal tumors using generic near infrared molecular probes. J Biophotonics 11:e201700232. Google Scholar
  99. 99.
    Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 14:203–219Google Scholar
  100. 100.
    Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park GL, Xie Y, Bae S, Henary M, Frangioni JV (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31:148–153Google Scholar
  101. 101.
    Nagaya T, Nakamura YA, Choyke PL, Kobayashi H (2017) Fluorescence-guided surgery. Front Oncol 7:314Google Scholar
  102. 102.
    Warram JM, de Boer E, Sorace AG, Chung TK, Kim H, Pleijhuis RG, van Dam GM, Rosenthal EL (2014) Antibody-based imaging strategies for cancer. Cancer Metastasis Rev 33:809–822Google Scholar
  103. 103.
    Hiroshima Y, Lwin TM, Murakami T, Mawy AA, Kuniya T, Chishima T, Endo I, Clary BM, Hoffman RM, Bouvet M (2016) Effective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibody. J Surg Oncol 114:951–958Google Scholar
  104. 104.
    Lwin TM, Murakami T, Miyake K et al (2018) Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol:1–7Google Scholar
  105. 105.
    Moore LS, Rosenthal EL, de Boer E, Prince AC, Patel N, Richman JM, Morlandt AB, Carroll WR, Zinn KR, Warram JM (2017) Effects of an unlabeled loading dose on tumor-specific uptake of a fluorescently labeled antibody for optical surgical navigation. Mol Imaging Biol 19:610–616Google Scholar
  106. 106.
    Freise AC, Wu AM (2015) In vivo imaging with antibodies and engineered fragments. Mol Immunol 67:142–152Google Scholar
  107. 107.
    Kobayashi H, Choyke PL, Ogawa M (2016) Monoclonal antibody-based optical molecular imaging probes; considerations and caveats in chemistry, biology and pharmacology. Curr Opin Chem Biol 33:32–38Google Scholar
  108. 108.
    Mazzocco C, Fracasso G, Germain-Genevois C, Dugot-Senant N, Figini M, Colombatti M, Grenier N, Couillaud F (2016) In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci Rep 6:23314Google Scholar
  109. 109.
    Sonn GA, Behesnilian AS, Jiang ZK, Zettlitz KA, Lepin EJ, Bentolila LA, Knowles SM, Lawrence D, Wu AM, Reiter RE (2016) Fluorescent image-guided surgery with an anti-prostate stem cell antigen (PSCA) diabody enables targeted resection of mouse prostate cancer xenografts in real time. Clin Cancer Res 22:1403–1412Google Scholar
  110. 110.
    Owens B (2017) Faster, deeper, smaller—the rise of antibody-like scaffolds. Nat Biotechnol 35:602–603Google Scholar
  111. 111.
    Sexton K, Tichauer K, Samkoe KS, Gunn J, Hoopes PJ, Pogue BW (2013) Fluorescent affibody peptide penetration in glioma margin is superior to full antibody. PLoS One 8:e60390Google Scholar
  112. 112.
    de Souza ALR, Marra K, Gunn J, Samkoe KS, Hoopes PJ, Feldwisch J, Paulsen KD, Pogue BW (2017) Fluorescent affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions. Mol Imaging Biol 19:41–48Google Scholar
  113. 113.
    Samkoe KS, Gunn JR, Marra K, Hull SM, Moodie KL, Feldwisch J, Strong TV, Draney DR, Hoopes PJ, Roberts DW, Paulsen K, Pogue BW (2017) Toxicity and pharmacokinetic profile for single-dose injection of ABY-029: a fluorescent anti-EGFR synthetic affibody molecule for human use. Mol Imaging Biol 19:512–521Google Scholar
  114. 114.
    Chakravarty R, Goel S, Cai W (2014) Nanobody: the “magic bullet” for molecular imaging? Theranostics 4:386–398Google Scholar
  115. 115.
    Debie P, Vanhoeij M, Poortmans N et al (2017) Improved debulking of peritoneal tumor implants by near-infrared fluorescent nanobody image guidance in an experimental mouse model. Mol Imaging Biol:1–7Google Scholar
  116. 116.
    Staderini M, Megia-Fernandez A, Dhaliwal K, Bradley M (2017) Peptides for optical medical imaging and steps towards therapy. Bioorg Med Chem 26:2816–2826. Google Scholar
  117. 117.
    Sun X, Li Y, Liu T et al (2017) Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev 110–111:38–51Google Scholar
  118. 118.
    Handgraaf HJM, Boonstra MC, Prevoo HAJM, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten M, Valentijn ARPM, Burggraaf J, van de Velde C, Frangioni JV, Vahrmeijer AL (2017) Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 8:21054–21066Google Scholar
  119. 119.
    Sato K, Gorka AP, Nagaya T, Michie MS, Nani RR, Nakamura Y, Coble VL, Vasalatiy OV, Swenson RE, Choyke PL, Schnermann MJ, Kobayashi H (2016) Role of fluorophore charge on the In Vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Bioconjug Chem 27:404–413Google Scholar
  120. 120.
    Yin X, Wang M, Wang H, Deng H, He T, Tan Y, Zhu Z, Wu Z, Hu S, Li Z (2017) Evaluation of neurotensin receptor 1 as a potential imaging target in pancreatic ductal adenocarcinoma. Amino Acids 49:1325–1335Google Scholar
  121. 121.
    Wyatt LC, Lewis JS, Andreev OA, Reshetnyak YK, Engelman DM (2017) Applications of pHLIP technology for cancer imaging and therapy. Trends Biotechnol 35:653–664Google Scholar
  122. 122.
    Golijanin J, Amin A, Moshnikova A, Brito JM, Tran TY, Adochite RC, Andreev GO, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK, Golijanin D (2016) Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo. Proc Natl Acad Sci U S A 113:11829–11834Google Scholar
  123. 123.
    Karabadzhak AG, An M, Yao L, Langenbacher R, Moshnikova A, Adochite RC, Andreev OA, Reshetnyak YK, Engelman DM (2014) pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol 9:2545–2553Google Scholar
  124. 124.
    Darmostuk M, Rimpelova S, Gbelcova H, Ruml T (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33:1141–1161Google Scholar
  125. 125.
    Hori S, Herrera A, Rossi J, Zhou J (2018) Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel) 10:9Google Scholar
  126. 126.
    Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572Google Scholar
  127. 127.
    Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng Y (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 12:3899–3911Google Scholar
  128. 128.
    Tan J, Yang N, Zhong L, Tan J, Hu Z, Zhao Q, Gong W, Zhang Z, Zheng R, Lai Z, Li Y, Zhou C, Zhang G, Zheng D, Zhang Y, Wu S, Jiang X, Zhong J, Huang Y, Zhou S, Zhao Y (2017) A new theranostic system based on endoglin aptamer conjugated fluorescent silica nanoparticles. Theranostics 7:4862–4876Google Scholar
  129. 129.
    Bazak R, Houri M, El Achy S et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784Google Scholar
  130. 130.
    Duman FD, Erkisa M, Khodadust R, Ari F, Ulukaya E, Acar HY (2017) Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine 12:2319–2333Google Scholar
  131. 131.
    Predina JD, Newton AD, Connolly C, Dunbar A, Baldassari M, Deshpande C, Cantu E III, Stadanlick J, Kularatne SA, Low PS, Singhal S (2018) Identification of a folate receptor-targeted near-infrared molecular contrast agent to localize pulmonary adenocarcinomas. Mol Ther 26:390–403Google Scholar
  132. 132.
    Hoogstins CES, Tummers QRJG, Gaarenstroom KN, de Kroon CD, Trimbos JBMZ, Bosse T, Smit VTHBM, Vuyk J, van de Velde CJH, Cohen AF, Low PS, Burggraaf J, Vahrmeijer AL (2016) A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res 22:2929–2938Google Scholar
  133. 133.
    Keating JJ, Runge JJ, Singhal S, Nims S, Venegas O, Durham AC, Swain G, Nie S, Low PS, Holt DE (2017) Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Cancer 123:1051–1060Google Scholar
  134. 134.
    Zhu M, Sheng Z, Jia Y, Hu D, Liu X, Xia X, Liu C, Wang P, Wang X, Zheng H (2017) Indocyanine green-holo-transferrin nanoassemblies for tumor-targeted dual-modal imaging and photothermal therapy of glioma. ACS Appl Mater Interfaces 9:39249–39258Google Scholar
  135. 135.
    Mochida A, Ogata F, Nagaya T, Choyke PL, Kobayashi H (2018) Activatable fluorescent probes in fluorescence-guided surgery: practical considerations. Bioorg Med Chem 26:925–930Google Scholar
  136. 136.
    Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44:83–90Google Scholar
  137. 137.
    Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574Google Scholar
  138. 138.
    Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5:42–47Google Scholar
  139. 139.
    Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J, Wang J, Wang Z, du Y, Tian J (2015) Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep 5:14197Google Scholar
  140. 140.
    Alley SC, Okeley NM, Senter PD (2010) Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537Google Scholar
  141. 141.
    Matsuzaki S, Serada S, Hiramatsu K, Nojima S, Matsuzaki S, Ueda Y, Ohkawara T, Mabuchi S, Fujimoto M, Morii E, Yoshino K, Kimura T, Naka T (2018) Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer. Int J Cancer 142:1056–1066Google Scholar
  142. 142.
    Su C-Y, Chen M, Chen L-C, Ho YS, Ho HO, Lin SY, Chuang KH, Sheu MT (2018) Bispecific antibodies (anti-mPEG/anti-HER2) for active tumor targeting of docetaxel (DTX)-loaded mPEGylated nanocarriers to enhance the chemotherapeutic efficacy of HER2-overexpressing tumors. Drug Deliv 25:1066–1079Google Scholar
  143. 143.
    Semkina AS, Abakumov MA, Skorikov AS, Abakumova TO, Melnikov PA, Grinenko NF, Cherepanov SA, Vishnevskiy DA, Naumenko VA, Ionova KP, Majouga AG, Chekhonin VP (2018) Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine 14:1733–1742. Google Scholar
  144. 144.
    Huang R, Li J, Kebebe D, Wu Y, Zhang B, Liu Z (2018) Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv 25:757–765Google Scholar
  145. 145.
    Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V (2018) Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv 25:517–532Google Scholar
  146. 146.
    Alibolandi M, Ramezani M, Abnous K, Hadizadeh F (2016) AS1411 aptamer-decorated biodegradable polyethylene glycol–poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non–small cell lung cancer in vitro. J Pharm Sci 105:1741–1750Google Scholar
  147. 147.
    Lin R, Huang J, Wang L, Li Y, Lipowska M, Wu H, Yang J, Mao H (2018) Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater Sci 6:1517–1525. Google Scholar
  148. 148.
    Rijpkema M, Oyen WJ, Bos D, Franssen GM, Goldenberg DM, Boerman OC (2014) SPECT- and fluorescence image-guided surgery using a dual-labeled carcinoembryonic antigen-targeting antibody. J Nucl Med 55:1519–1524Google Scholar
  149. 149.
    Zhang X-S, Xuan Y, Yang X-Q, Cheng K, Zhang RY, Li C, Tan F, Cao YC, Song XL, An J, Hou XL, Zhao YD (2018) A multifunctional targeting probe with dual-mode imaging and photothermal therapy used in vivo. J Nanobiotechnology 16:42Google Scholar
  150. 150.
    Yang H-M, Park CW, Park S, Kim J-D (2018) Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf B Biointerfaces 161:183–191Google Scholar
  151. 151.
    Kommidi H, Guo H, Nurili F, Vedvyas Y, Jin MM, McClure TD, Ehdaie B, Sayman HB, Akin O, Aras O, Ting R (2018) 18F-positron emitting/trimethine cyanine-fluorescent contrast for image-guided prostate cancer management. J Med Chem 61:4256–4262Google Scholar
  152. 152.
    Wang X, Yan J, Pan D, et al (2018) Polyphenol-poloxamer self-assembled supramolecular nanoparticles for tumor NIRF/PET imaging. Adv Healthc Mater 15:1701505Google Scholar
  153. 153.
    Chi C, Du Y, Ye J et al (2014) Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 4:1072–1084Google Scholar
  154. 154.
    Hausner SH, Bauer N, Hu LY, Knight LM, Sutcliffe JL (2015) The effect of bi-terminal PEGylation of an integrin αvβ6-targeted 18F peptide on pharmacokinetics and tumor uptake. J Nucl Med 56:784–790Google Scholar
  155. 155.
    Han Z, Li Y, Roelle S, Zhou Z, Liu Y, Sabatelle R, DeSanto A, Yu X, Zhu H, Magi-Galluzzi C, Lu ZR (2017) Targeted contrast agent specific to an oncoprotein in tumor microenvironment with the potential for detection and risk stratification of prostate cancer with MRI. Bioconjug Chem 28:1031–1040Google Scholar
  156. 156.
    Rosenthal EL, Warram JM, Bland KI, Zinn KR (2015) The status of contemporary image-guided modalities in oncologic surgery. Ann Surg 261:46–55Google Scholar
  157. 157.
    Kim MJ, Kim CS, Park YS et al (2016) The efficacy of intraoperative frozen section analysis during breast-conserving surgery for patients with ductal carcinoma in situ. Breast Cancer (Auckl) 10:205–210Google Scholar
  158. 158.
    Ko S, Chun YK, Kang SS, Hur MH (2017) The usefulness of intraoperative circumferential frozen-section analysis of lumpectomy margins in breast-conserving surgery. J Breast Cancer 20:176–182Google Scholar
  159. 159.
    Pleijhuis RG, Graafland M, de Vries J, Bart J, de Jong JS, van Dam GM (2009) Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol 16:2717–2730Google Scholar
  160. 160.
    Petropoulou T, Kapoula A, Mastoraki A et al (2017) Imprint cytology versus frozen section analysis for intraoperative assessment of sentinel lymph node in breast cancer. Breast Cancer (Dove Med Press) 9:325–330Google Scholar
  161. 161.
    Barth CW, Schaefer JM, Rossi VM, Davis SC, Gibbs SL (2017) Optimizing fresh specimen staining for rapid identification of tumor biomarkers during surgery. Theranostics 7:4722–4734Google Scholar
  162. 162.
    Hutteman M, Choi HS, Mieog JSD, van der Vorst JR, Ashitate Y, Kuppen PJK, van Groningen MC, Löwik CWGM, Smit VTHBM, van de Velde CJH, Frangioni JV, Vahrmeijer AL (2011) Clinical translation of ex vivo sentinel lymph node mapping for colorectal cancer using invisible near-infrared fluorescence light. Ann Surg Oncol 18:1006–1014Google Scholar
  163. 163.
    Cutter JL, Cohen NT, Wang J, Sloan AE, Cohen AR, Panneerselvam A, Schluchter M, Blum G, Bogyo M, Basilion JP (2012) Topical application of activity-based probes for visualization of brain tumor tissue. PLoS One 7:e33060Google Scholar
  164. 164.
    Tipirneni KE, Warram JM, Moore LS, Prince AC, de Boer E, Jani AH, Wapnir IL, Liao JC, Bouvet M, Behnke NK, Hawn MT, Poultsides GA, Vahrmeijer AL, Carroll WR, Zinn KR, Rosenthal E (2017) Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg 266:36–47Google Scholar
  165. 165.
    Tummers WS, Warram JM, Tipirneni KE et al (2017) Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 77:2197 LP–2192206Google Scholar
  166. 166.
    Mondal SB, Gao S, Zhu N et al (2015) Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep 5:12117Google Scholar
  167. 167.
    Mondal SB, Gao S, Zhu N, Habimana-Griffin LM, Akers WJ, Liang R, Gruev V, Margenthaler J, Achilefu S (2017) Optical see-through cancer vision goggles enable direct patient visualization and real-time fluorescence-guided oncologic surgery. Ann Surg Oncol 24:1897–1903Google Scholar
  168. 168.
    Boogerd LSF, Hoogstins CES, Schaap DP, Kusters M, Handgraaf HJM, van der Valk MJM, Hilling DE, Holman FA, Peeters KCMJ, Mieog JSD, van de Velde CJH, Farina-Sarasqueta A, van Lijnschoten I, Framery B, Pèlegrin A, Gutowski M, Nienhuijs SW, de Hingh IHJT, Nieuwenhuijzen GAP, Rutten HJT, Cailler F, Burggraaf J, Vahrmeijer AL (2018) Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol 3:181–191Google Scholar
  169. 169.
    Payne WM, Hill TK, Svechkarev D, Holmes MB, Sajja BR, Mohs AM (2017) Multimodal imaging nanoparticles derived from hyaluronic acid for integrated preoperative and intraoperative cancer imaging. Contrast Media Mol Imaging 2017:1–14Google Scholar
  170. 170.
    Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, Staley CA, Wang YA, Mao H, Yang L (2017) Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics 7:1689–1704Google Scholar
  171. 171.
    Biffi S, Petrizza L, Garrovo C, Rampazzo E, Andolfi L, Giustetto P, Nikolov I, Kurdi G, Danailov MB, Zauli G, Secchiero P, Prodi L (2016) Multimodal near-infrared-emitting PluS silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. Int J Nanomedicine 11:4865–4874Google Scholar
  172. 172.
    Lu Z, Pham TT, Rajkumar V, Yu Z, Pedley RB, Årstad E, Maher J, Yan R (2018) A dual reporter iodinated labeling reagent for cancer positron emission tomography imaging and fluorescence-guided surgery. J Med Chem 61:1636–1645Google Scholar
  173. 173.
    Nagaya T, Nakamura Y, Sato K, Harada T, Choyke PL, Hodge JW, Schlom J, Kobayashi H (2017) Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 8:8807–8817Google Scholar
  174. 174.
    Maruoka Y, Nagaya T, Nakamura Y, Sato K, Ogata F, Okuyama S, Choyke PL, Kobayashi H (2017) Evaluation of early therapeutic effects after near-infrared Photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging. Mol Pharm 14:4628–4635Google Scholar
  175. 175.
    Sun Q, You Q, Wang J, Liu L, Wang Y, Song Y, Cheng Y, Wang S, Tan F, Li N (2018) Theranostic Nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl Mater Interfaces 10:1963–1975Google Scholar
  176. 176.
    Li X, Schumann C, Albarqi HA, Lee CJ, Alani AWG, Bracha S, Milovancev M, Taratula O, Taratula O (2018) A tumor-activatable theranostic nanomedicine platform for NIR fluorescence-guided surgery and combinatorial phototherapy. Theranostics 8:767–784Google Scholar
  177. 177.
    Sun Y, Ding M, Zeng X, Xiao Y, Wu H, Zhou H, Ding B, Qu C, Hou W, Er-bu AGA, Zhang Y, Cheng Z, Hong X (2017) Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 8:3489–3493Google Scholar
  178. 178.
    Cheng K, Chen H, Jenkins CH, Zhang G, Zhao W, Zhang Z, Han F, Fung J, Yang M, Jiang Y, Xing L, Cheng Z (2017) Synthesis, characterization, and biomedical applications of a targeted dual-modal near-infrared-II fluorescence and photoacoustic imaging Nanoprobe. ACS Nano 11:12276–12291Google Scholar
  179. 179.
    Miao W, Kim H, Gujrati V, Kim JY, Jon H, Lee Y, Choi M, Kim J, Lee S, Lee DY, Kang S, Jon S (2016) Photo-decomposable organic nanoparticles for combined tumor optical imaging and multiple phototherapies. Theranostics 6:2367–2379Google Scholar
  180. 180.
    Liu L, Ruan Z, Yuan P, Li T, Yan L (2018) Oxygen self-sufficient amphiphilic polypeptide nanoparticles encapsulating BODIPY for potential near infrared imaging-guided photodynamic therapy at low energy. Nanotheranostics 2:59–69Google Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  1. 1.Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of SurgeryUniversity of Nebraska Medical CenterOmahaUSA
  4. 4.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaUSA
  5. 5.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations