Molecular Imaging and Biology

, Volume 21, Issue 2, pp 279–285 | Cite as

Effects of a Ketogenic Diet on [18F]FDG-PET Imaging in a Mouse Model of Lung Cancer

  • Lorena CussóEmail author
  • Mónica Musteanu
  • Francisca Mulero
  • Mariano Barbacid
  • Manuel Desco
Research Article



Myocardial uptake can hamper visualization of lung tumors, atherosclerotic plaques, and inflammatory diseases in 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) studies because it leads to spillover in adjacent structures. Several preparatory pre-imaging protocols (including dietary restrictions and drugs) have been proposed to decrease physiological [18F]FDG uptake by the heart, although their effect on tumor glucose metabolism remains largely unknown. The objective of this study was to assess the effects of a ketogenic diet (as an alternative protocol to fasting) on tumor glucose metabolism assessed by [18F]FDG positron emission tomography (PET) in a mouse model of lung cancer.


PET scans were performed 60 min after injection of 18.5 MBq of [18F]FDG. PET data were collected for 45 min, and an x-ray computed tomograph (CT) image was acquired after the PET scan. A PET/CT study was obtained for each mouse after fasting and after the ketogenic diet. Quantitative data were obtained from regions of interest in the left ventricular myocardium and lung tumor.


Three days on a ketogenic diet decreased mean standard uptake value (SUVmean) in the myocardium (SUVmean 0.95 ± 0.36) more than one night of fasting (SUVmean 1.64 ± 0.93). Tumor uptake did not change under either dietary condition.


These results show that 3 days on high-fat diets prior to [18F]FDG-PET imaging does not change tumor glucose metabolism compared with one night of fasting, although high-fat diets suppress myocardial [18F]FDG uptake better than fasting.

Key words

High-fat diet [18F]FDG-PET Ketogenic diet Fasting Lung cancer 



The authors thank Alexandra de Francisco and Yolanda Sierra for their excellent work with animal preparation and imaging protocols.

Funding Information

This work was partially supported by Comunidad de Madrid (S2017/BMD-3867 RENIM-CM) and cofinanciado con Fondos Estructurales de la Unión Europea. The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

Compliance with Ethical Standards

Ethics Statement

All animal procedures were approved by the Animal Experimentation Ethics Committee of Hospital General Universitario Gregorio Marañón (ES280790000087) and the Ethics Committees of CNIO and the Carlos III Health Institute, Madrid, and performed according to European regulations (2010/63/UE) and National regulations (RD 53/2013).

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bertagna F, Biasiotto G, Giubbini R (2013) The role of F-18-fluorothymidine PET in oncology. Clin Transl Imaging 1:77–97CrossRefGoogle Scholar
  2. 2.
    Hoh CK (2007) Clinical use of FDG PET. Nucl Med Biol 34:737–742CrossRefGoogle Scholar
  3. 3.
    Sathekge M, Maes A, Van de Wiele C (2013) FDG-PET imaging in HIV infection and tuberculosis. Semin Nucl Med 43:349–366CrossRefGoogle Scholar
  4. 4.
    Fallahi B, Moasses-Ghafari B, Fard-Esfahani A et al (2017) Factors influencing the pattern and intensity of myocardial 18F-FDG uptake in oncologic PET-CT imaging. Iranian J Nucl Med 25:52–61Google Scholar
  5. 5.
    Maurer AH, Burshteyn M, Adler LP, Steiner RM (2011) How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics 31:1287–1305CrossRefGoogle Scholar
  6. 6.
    Lum DP, Wandell S, Ko J, Coel MN (2002) Reduction of myocardial 2-deoxy-2-[18F]fluoro-D-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol 4:232–237CrossRefGoogle Scholar
  7. 7.
    Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77 quiz 150-151CrossRefGoogle Scholar
  8. 8.
    Gaeta C, Fernandez Y, Pavia J et al (2011) Reduced myocardial 18F-FDG uptake after calcium channel blocker administration. Initial observation for a potential new method to improve plaque detection. Eur J Nucl Med Mol Imaging 38:2018–2024CrossRefGoogle Scholar
  9. 9.
    Tupper T, Wang Y, McDonagh E, et al. (2011) Utilizing Ketogenic Diet as an Alternative to Fasting in Preclinical 18F-FDG PET. In World Mol Imaging Congress (WMIC): 2011 Program BookGoogle Scholar
  10. 10.
    Williams G, Kolodny GM (2008) Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol 190:W151–W156CrossRefGoogle Scholar
  11. 11.
    Cussó L, Vaquero JJ, Bacharach S, Desco M (2014) Comparison of methods to reduce myocardial 18F-FDG uptake in mice: Calcium Channel blockers versus high-fat diets. PLoS One 9:e107999CrossRefGoogle Scholar
  12. 12.
    Cheng VY, Slomka PJ, Ahlen M, Thomson LEJ, Waxman AD, Berman DS (2010) Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: a randomized controlled trial. J Nucl Cardiol 17:286–291CrossRefGoogle Scholar
  13. 13.
    Kobayashi Y, Kumita S-i, Fukushima Y et al (2013) Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol 62:314–319CrossRefGoogle Scholar
  14. 14.
    Nebeling LC, Miraldi F, Shurin SB, Lerner E (1995) Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 14:202–208CrossRefGoogle Scholar
  15. 15.
    Skinner R, Trujillo A, Ma XJ, Beierle EA (2009) Ketone bodies inhibit the viability of human neuroblastoma cells. J Pediatr Surg 44:212–216CrossRefGoogle Scholar
  16. 16.
    Seyfried TN, Sanderson TM, El-Abbadi MM et al (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89:1375–1382CrossRefGoogle Scholar
  17. 17.
    Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC (2012) The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 7:e36197CrossRefGoogle Scholar
  18. 18.
    Caso J, Masko EM, Thomas JA et al (2013) The effect of carbohydrate restriction on prostate cancer tumor growth in a castrate mouse xenograft model. Prostate 73:449–454CrossRefGoogle Scholar
  19. 19.
    Poff AM, Ari C, Seyfried TN, D’Agostino DP (2013) The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 8:e65522CrossRefGoogle Scholar
  20. 20.
    Ambrogio C, Cámara JA, Nieto P et al (2015) Analysis of murine lung tumors by micro PET-CT imaging. In Bio-protocol:e1692Google Scholar
  21. 21.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, Kolodny G, Laham R (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50:563–568CrossRefGoogle Scholar
  22. 22.
    Bertagna F, Bisleri G, Motta F, Merli G, Cossalter E, Lucchini S, Biasiotto G, Bosio G, Terzi A, Muneretto C, Giubbini R (2012) Possible role of F18-FDG-PET/CT in the diagnosis of endocarditis: preliminary evidence from a review of the literature. Int J Cardiovasc Imaging 28:1417–1425CrossRefGoogle Scholar
  23. 23.
    Abella M, Vaquero JJ, Sisniega A, Pascau J, Udías A, García V, Vidal I, Desco M (2012) Software architecture for multi-bed FDK-based reconstruction in X-ray CT scanners. Comput Meth Prog Bio 107:218–232CrossRefGoogle Scholar
  24. 24.
    Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900Google Scholar
  25. 25.
    Woo S-K, Lee TS, Kim KM, Kim JY, Jung JH, Kang JH, Cheon GJ, Choi CW, Lim SM (2008) Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 35:143–150CrossRefGoogle Scholar
  26. 26.
    Huebbers CU, Adam AC, Preuss SF, Schiffer T, Schilder S, Guntinas-Lichius O, Schmidt M, Klussmann JP, Wiesner RJ (2015) High glucose uptake unexpectedly is accompanied by high levels of the mitochondrial β-F1-ATPase subunit in head and neck squamous cell carcinoma. Oncotarget 6:36172–36184CrossRefGoogle Scholar
  27. 27.
    Guckenberger M, Rudofsky L, Andratschke N (2015) FDG-PET imaging for advanced radiotherapy treatment of non-small-cell lung Cancer. In: Hodler J, von Schulthess GK, Kubik-Huch RA, Zollikofer CL (eds) Diseases of the chest and heart 2015–2018. Springer Milan, pp 177–182Google Scholar
  28. 28.
    García-Beccaria M, Martínez P, Méndez-Pertuz M et al (2015) Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-Ras(G12V)-induced lung cancer by induction of telomeric DNA damage. EMBO Mol Med 7:930–949CrossRefGoogle Scholar
  29. 29.
    Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in Cancer—a PET study. J Nucl Med 34:1–6Google Scholar
  30. 30.
    Rubello D, Gordien P, Morliere C et al (2015) Variability of hepatic 18F-FDG uptake at interim PET in patients with Hodgkin lymphoma. Clin Nucl Med 40:e405–e410CrossRefGoogle Scholar
  31. 31.
    Wahl RL, Henry CA, Ethier SP (1992) Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology 183:643–647CrossRefGoogle Scholar
  32. 32.
    Hindryckx P, Staelens S, Devisscher L, Deleye S, de Vos F, Delrue L, Peeters H, Laukens D, de Vos M (2011) Longitudinal quantification of inflammation in the murine dextran sodium sulfate-induced colitis model using muPET/CT. Inflamm Bowel Dis 17:2058–2064CrossRefGoogle Scholar
  33. 33.
    Kestler M, Muñoz P, Rodríguez-Créixems M et al (2014) Role of 18F-FDG PET in patients with infectious endocarditis. J Nucl Med 55:1093–1098CrossRefGoogle Scholar
  34. 34.
    Ravasi L, Shimoji K, Soto-Montenegro ML, Esaki T, Seidel J, Sokoloff L, Schmidt K (2011) Use of [18F]fluorodeoxyglucose and the ATLAS small animal PET scanner to examine cerebral functional activation by whisker stimulation in unanesthetized rats. Nucl Med Commun 32:336–342CrossRefGoogle Scholar
  35. 35.
    Thanos PK, Michaelides M, Gispert JD, Pascau J, Soto-Montenegro ML, Desco M, Wang R, Wang GJ, Volkow ND (2008) Differences in response to food stimuli in a rat model of obesity: in-vivo assessment of brain glucose metabolism. Int J Obes 32:1171–1179CrossRefGoogle Scholar
  36. 36.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129CrossRefGoogle Scholar
  37. 37.
    Harisankar C, Mittal B, Agrawal K, Abrar M et al (2011) Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 18:926–936CrossRefGoogle Scholar
  38. 38.
    López-Ríos F, Sánchez-Aragó M, García-García E, Ortega ÁD, Berrendero JR, Pozo-Rodríguez F, López-Encuentra Á, Ballestín C, Cuezva JM (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67:9013–9017CrossRefGoogle Scholar
  39. 39.
    Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG (2004) The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis 25:1157–1163CrossRefGoogle Scholar
  40. 40.
    Sánchez-Aragó M, Formentini L, Cuezva JM (2013) Mitochondria-mediated energy adaption in Cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid Redox Signal 19:285–298CrossRefGoogle Scholar
  41. 41.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270Google Scholar
  42. 42.
    Langen KJ, Braun U, Rota Kops E, Herzog H, Kuwert T, Nebeling B, Feinendegen LE (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34:355–359Google Scholar
  43. 43.
    Wong KP, Sha W, Zhang X, Huang SC (2011) Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med 52:800–807CrossRefGoogle Scholar
  44. 44.
    Stanley WC (2001) Changes in cardiac metabolism: a critical step from stable angina to ischaemic cardiomyopathy. Eur Heart J Suppl 3:O2–O7CrossRefGoogle Scholar
  45. 45.
    Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA (2006) Impact of animal handling on the results of 18FDG PET studies in mice. J Nucl Med 47:999–1006Google Scholar
  46. 46.
    Toyama H, Ichise M, Liow JS, Vines DC, Seneca NM, Modell KJ, Seidel J, Green MV, Innis RB (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256CrossRefGoogle Scholar
  47. 47.
    Jensen T, Kiersgaard M, Sørensen D, Mikkelsen LF (2013) Fasting of mice: a review. Lab Anim 47:225–240CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  1. 1.Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridLeganésSpain
  2. 2.Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
  3. 3.Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
  4. 4.Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
  5. 5.Centro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain

Personalised recommendations