Skip to main content
Log in

Tumor Targeting via Sialic Acid: [68Ga]DOTA-en-pba as a New Tool for Molecular Imaging of Cancer with PET

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to demonstrate the potential of Ga-68-labeled macrocycle (DOTA-en-pba) conjugated with phenylboronic vector for tumor recognition by positron emission tomography (PET), based on targeting of the overexpressed sialic acid (Sia).

Procedures

The imaging reporter DOTA-en-pba was synthesized and labeled with Ga-68 at high efficiency. Cell binding assay on Mel-C and B16-F10 melanoma cells was used to evaluate melanin production and Sia overexpression to determine the best model for demonstrating the capability of [68Ga]DOTA-en-pba to recognize tumors. The in vivo PET imaging was done with B16-F10 tumor-bearing SCID mice injected with [68Ga]DOTA-en-pba intravenously. Tumor, blood, and urine metabolites were assessed to evaluate the presence of a targeting agent.

Results

The affinity of [68Ga]DOTA-en-pba to Sia was demonstrated on B16-F10 melanoma cells, after the production of melanin as well as Sia overexpression was proved to be up to four times higher in this cell line compared to that in Mel-C cells. Biodistribution studies in B16-F10 tumor-bearing SCID mice showed blood clearance at the time points studied, while uptake in the tumor peaked at 60 min post-injection (6.36 ± 2.41 % ID/g). The acquired PET images were in accordance with the ex vivo biodistribution results. Metabolite assessment on tumor, blood, and urine samples showed that [68Ga]DOTA-en-pba remains unmetabolized up to at least 60 min post-injection.

Conclusions

Our work is the first attempt for in vivo imaging of cancer by targeting overexpression of sialic acid on cancer cells with a radiotracer in PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6:140–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mankoff DA, Pryma Da Fau-Clark AS, Clark AS (2014) Molecular imaging biomarkers for oncology clinical trials. J Nucl Med 55:525–528

    Article  PubMed  CAS  Google Scholar 

  3. de Jong M (2017) New tracers to the clinic. Q J Nucl Med Mol Imaging 61:133–134

    PubMed  Google Scholar 

  4. Bernsen MR, Kooiman K, Segbers M, van Leeuwen FWB, de Jong M (2015) Biomarkers in preclinical cancer imaging. Eur J Nucl Med Mol Imaging 42:579–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fani M, Maecke HR (2012) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39(Suppl 1):S11–S30

    Article  PubMed  CAS  Google Scholar 

  6. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555

    Article  PubMed  CAS  Google Scholar 

  7. Pearce OM, Laubli H (2016) Sialic acids in cancer biology and immunity. Glycobiology 26:111–128

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka F, Otake Y, Nakagawa T et al (2001) Prognostic significance of polysialic acid expression in resected non-small cell lung cancer. Cancer Res 61:1666

    PubMed  CAS  Google Scholar 

  9. Falconer RA, Errington RJ, Shnyder SD et al (2012) Polysialyltransferase: a new target in metastatic cancer. Curr Cancer Drug Targets 12:925–939

    Article  PubMed  CAS  Google Scholar 

  10. Julien S, Bobowski M, Steenackers A, le Bourhis X, Delannoy P (2013) How do gangliosides regulate RTKs signaling? Cell 2:751–767

    Article  CAS  Google Scholar 

  11. Büll C, Boltje TJ, van Dinther EAW, Peters T, de Graaf AMA, Leusen JHW, Kreutz M, Figdor CG, den Brok MH, Adema GJ (2015) Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano 9:733–745

    Article  PubMed  CAS  Google Scholar 

  12. Uemura T, Shiozaki K, Yamaguchi K, Miyazaki S, Satomi S, Kato K, Sakuraba H, Miyagi T (2009) Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4. Oncogene 28:1218–1229

    Article  PubMed  CAS  Google Scholar 

  13. Kimoto M, Ando K, Koike S, Matsumoto T, Jibu T, Moriya H, Kanegasaki S (1993) Significance of platelets in an antimetastatic activity of bacterial lipopolysaccharide. Clin Exp Metastasis 11:285–292

    Article  PubMed  CAS  Google Scholar 

  14. Crich SG, Alberti D, Szabo I et al (2013) MRI visualization of melanoma cells by targeting overexpressed sialic acid with a GdIII-dota-en-pba imaging reporter. Angew Chem Int Ed 52:1161–1164

    Article  CAS  Google Scholar 

  15. Blamire AM (2008) The technology of MRI: the next 10 years? Br J Radiol 81:601–617

    Article  PubMed  CAS  Google Scholar 

  16. Kunjachan S, Jayapaul J, Mertens ME et al (2012) Theranostic systems and strategies for monitoring nanomedicine-mediated drug targeting. Curr Pharm Biotechnol 13:609−622

    Article  Google Scholar 

  17. Toy R, Bauer L, Hoimes C et al (2014) Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 30:79–97

    Article  CAS  Google Scholar 

  18. Fani M, Andre JP, Maecke HR (2008) 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:67–77

    Article  PubMed  CAS  Google Scholar 

  19. Al-Nahhas A, Fanti S (2012) Radiolabelled peptides in diagnosis and therapy: an introduction. Eur Jo Nucl Med Mol Imaging 39:1–3

    Article  Google Scholar 

  20. Decristoforo C, Pickett RD, Verbruggen A (2012) Feasibility and availability of 68Ga-labelled peptides. Eur J Nucl Med Mol Imaging 39:31–40

    Article  CAS  Google Scholar 

  21. Rosch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans 40:6104–6111

    Article  PubMed  CAS  Google Scholar 

  22. Zhernosekov KP, Filosofov D, Baum RP et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

  23. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47(6):999–1006

    PubMed  CAS  Google Scholar 

  24. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499

    Article  PubMed  CAS  Google Scholar 

  25. Martinez-Duncker I, Salinas-Marin R, Martinez-Duncker C (2011) Towards in vivo imaging of cancer sialylation. Int J Mol Imaging 2011:1–10

    Article  CAS  Google Scholar 

  26. Cazet A, Julien S, Bobowski M, Krzewinski-Recchi MA, Harduin-Lepers A, Groux-Degroote S, Delannoy P (2010) Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 345:1377–1383

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez-Briera A, Garcia-Parceiro I, Cuevas E, Gil-Martin E (2010) Effect of human colorectal carcinogenesis on the neural cell adhesion molecule expression and polysialylation. Oncology 78:196–204

    Article  PubMed  CAS  Google Scholar 

  28. Djanashvili K, Koning GA, van der Meer AJGM, Wolterbeek HT, Peters JA (2007) Phenylboronate Tb-160 complexes for molecular recognition of glycoproteins expressed on tumor cells. Contrast Media Mol Imaging 2:35–41

    Article  PubMed  CAS  Google Scholar 

  29. Caravan P, Zhang Z (2013) Targeted MRI contrast agents. In: The chemistry of contrast agents in medical magnetic resonance imaging. John Wiley & Sons, Ltd, pp 311–342

Download references

Acknowledgements

The authors gratefully acknowledge Mr. S. Xanthopoulos (Radiochemical Studies Laboratory, INRaSTES, NCSR “Demokritos”) and Mr. E. Balafas (Laboratory Animal Facilities, Biomedical Research Foundation of the Academy of Athens) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope Bouziotis.

Ethics declarations

These studies have been further approved by the Ethics Committee of the NCSR “Demokritos,” and animal care and procedures followed are in accordance with institutional guidelines and licenses issued by the Department of Agriculture and Veterinary Policies of the Prefecture of Attiki (registration numbers: EL 25 BIO 022 and EL 25 BIO 021).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoukalas, C., Geninatti-Crich, S., Gaitanis, A. et al. Tumor Targeting via Sialic Acid: [68Ga]DOTA-en-pba as a New Tool for Molecular Imaging of Cancer with PET. Mol Imaging Biol 20, 798–807 (2018). https://doi.org/10.1007/s11307-018-1176-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1176-0

Key words

Navigation