Skip to main content

Advertisement

Log in

Hippocampal Deep Brain Stimulation Reduces Glucose Utilization in the Healthy Rat Brain

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The effects of deep brain stimulation (DBS) have been studied primarily by cellular studies, which lack the ability to elucidate DBS-related responses on a whole-brain scale. 2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET) reflects changes in neural activity throughout the entire brain volume. The aim of this study was to investigate the whole-brain effect of DBS on the glucose utilization in healthy rats.

Procedures

Seven rats were implanted with a DBS electrode in the right hippocampus and injected with [18F]FDG to measure the glucose metabolism during DBS.

Results

Analysis reveals significant DBS-induced decreases in the glucose metabolism in the bilateral hippocampus and other limbic structures.

Conclusions

This study demonstrates that DBS exhibits not only a local effect around the electrode tip but also in other limbic regions. [18F]FDG-PET studies have the potential to provide better insight into the mechanism of action of DBS by simultaneously observing activity at multiple sites in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okun MS (2012) Deep-brain stimulation for Parkinson’s disease. N Engl J Med 367:1529–1538

    Article  CAS  PubMed  Google Scholar 

  2. Bronstein JM, Tagliati M, Alterman RL et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68(2):165–171

    Article  PubMed  Google Scholar 

  3. Birdno MJ, Grill WM (2008) Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5:14–25

    Article  PubMed Central  PubMed  Google Scholar 

  4. Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13:696–706

    Article  CAS  PubMed  Google Scholar 

  5. Fischer R, Salanova V, Witt T, SANTE Study Group (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908

    Article  Google Scholar 

  6. Boon P, Raedt R, De Herdt V et al (2009) Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–277

    Article  PubMed  Google Scholar 

  7. Vonck K, Sprengers M, Carrette E et al (2013) A decade of experience with deep brain stimulation for patients with refractory medial temporal lobe epilepsy. Int J Neural Syst 23(1):1–13

    Article  Google Scholar 

  8. Nuttin B, Cosyns P, Demeulemeester H et al (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354:1526

    Article  CAS  PubMed  Google Scholar 

  9. Abelson JL, Curtis GC, Sagher O et al (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 75(5):510–516

    Article  Google Scholar 

  10. Lai HY, Albaugh DL, Kao Y-CJ et al (2014) Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn Reson Med. doi:10.1002/mrm.25239

    PubMed Central  Google Scholar 

  11. Younce JR, Albaugh DL, Shih Y-YL (2014) Deep brain stimulation with simultaneous FMRI in rodents. J Vis Exp 84:e51271

    PubMed  Google Scholar 

  12. Kerklaan BJ, Berckel BN, Herholz K et al (2014) The added value of 18-Fluorodeoxyglucose-positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Dement. doi:10.1177/1533317514524811

    Google Scholar 

  13. Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156

    Article  CAS  PubMed  Google Scholar 

  14. Magistretti PJ, Pellerin L (1996) The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry 1(6):445–452

    CAS  PubMed  Google Scholar 

  15. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  PubMed  Google Scholar 

  16. Hershey T, Revilla FJ, Wernle AR et al (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61(6):816–821

    Article  CAS  PubMed  Google Scholar 

  17. Asanuma K, Tang C, Ma Y et al (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed  Google Scholar 

  18. Trost M, Su S, Su P et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31:301–307

    Article  PubMed  Google Scholar 

  19. Goerendt K, Lawrence AD, Mehta MA et al (2006) Distributed neural actions of anti-parkinsonian therapies as revealed by PET. J Neural Transm 113:75–86

    Article  CAS  PubMed  Google Scholar 

  20. Karimi M, Golchin N, Tabbal SD et al (2008) Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 131:2710–2719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Geday J, Ostergaard K, Johnsen E, Gjedde A (2009) STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Hum Brain Mapp 30:112–121

    Article  PubMed  Google Scholar 

  22. Borghammer P, Cumming P, Aanerud J, Gjedde A (2009) Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage 45:249–257

    Article  PubMed  Google Scholar 

  23. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  24. Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227

    Article  PubMed  Google Scholar 

  25. Morrell M (2006) Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr Opin Neurol 19:164–168

    Article  PubMed  Google Scholar 

  26. Theodore WH, Fischer R (2007) Brain stimulation for epilepsy. Acta Neurochir Suppl 97:261–272

    Article  CAS  PubMed  Google Scholar 

  27. Wyckhuys T, De Smedt T, Claeys P et al (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 48:1543–1550

    Article  PubMed  Google Scholar 

  28. Wyckhuys T, Boon P, Raedt R (2010) Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. Epilepsia 51(11):2297–2304

    Article  PubMed  Google Scholar 

  29. Cuellar-Herrera M, Neri-Bazan L, Rocha (2006) Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res 72:10–17

    Article  PubMed  Google Scholar 

  30. Velasco AL, Fischer RS (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10:261–270

    Article  PubMed  Google Scholar 

  31. Velasco AL, Velasco F, Velasco M et al (2007) Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia 48:1895–1903

    Article  PubMed  Google Scholar 

  32. Velasco F, Velasco M, Velasco AL et al (2001) Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotact Funct Neurosurg 77:223–227

    Article  CAS  PubMed  Google Scholar 

  33. Vonck K, Boon P, Achten E et al (2002) Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann Neurol 52:556–565

    Article  PubMed  Google Scholar 

  34. Osorio I, Frei MG, Sunderam S et al (2005) Automated seizure abatement in humans using electrical stimulation. Ann Neurol 57:258–268

    Article  PubMed  Google Scholar 

  35. Boon P, Vonck K, De Herdt V et al (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48:1551–1560

    Article  PubMed  Google Scholar 

  36. Cuckiert A, Cuckiert CM, Burattini JA, Lima AM (2014) Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy. Seizure 23(1):6–9

    Article  Google Scholar 

  37. Goodman JH, Berger RE, Tcheng TK (2005) Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 46:1–7

    Article  PubMed  Google Scholar 

  38. Akman T, Erken H, Acar G et al (2011) Effects of the hippocampal deep brain stimulation on cortical epileptic discharges in penicillin-induced epilepsy model in rats. Turk Neurosurg 21(1):1–5

    PubMed  Google Scholar 

  39. Paxinos G, Watson C (2007) In: The rat brain in stereotactic coordinates, 6th edn. Academic Press

  40. Wyckhuys T, Staelens S, Van Nieuwenhuyse B et al (2010) Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 52(1):55–61

    Article  PubMed  Google Scholar 

  41. Rondouin G, Lerner-Natoli M, Hashizume A (1987) Wet dog shakes in limbic versus generalized seizures. Exp Neurol 95(2):500–505

    Article  CAS  PubMed  Google Scholar 

  42. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Direction set (Powell’s) methods in multidimensions. In: Numerical recipes in C, 2nd edn. Cambridge University Press, New York, pp 412–420

  43. Becerra L, Pendse G, Chang PC et al (2011) Robust reproducible resting state networks in the awake rodent brain. PLoS One 6(10):e25701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jonckers E, Van Audekerke J, De Visscher G et al (2011) Functional connectivity of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6(4):e18876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Buchhalter JR, Fieles A, Dichter MA (1990) Hippocampal commissural connections in the neonatal rat. Dev Brain Res 56:211–216

    Article  CAS  Google Scholar 

  46. Klein J, Soto-Montenegro ML, Pascau J et al (2011) A novel approach to investigate neuronal network activity patterns affected by deep brain stimulation in rats. J Psychiatr Res 45:927–930

    Article  PubMed  Google Scholar 

  47. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  48. Canals S, Beyerlein M, Murayama Y, Logothetis NK (2008) Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn Reson Imaging 26:978–986

    Article  PubMed  Google Scholar 

  49. Shih Y-YI, Yash TV, Rogers B, Duong TQ (2014) FMRI of deep brain stimulation at the rat ventral posteromedial thalamus. Brain Stimulation 7(2):190–193

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chao T-HH, Chen J-H, Yen C-T (2014) Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats. PLoS ONE 9(5):e97305

    Article  PubMed Central  PubMed  Google Scholar 

  51. van Welie I, van Hooft JA, Wadman WJ (2004) Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated I-h channels. Proc Natl Acad Sci U S A 101:5123–5128

    Article  PubMed Central  PubMed  Google Scholar 

  52. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356

    CAS  PubMed  Google Scholar 

  53. Vedam-Mai V, van Battum EY, Kamphuis W et al (2012) Deep brain stimulation and the role of astrocytes. Mol Psychiatry 17:124–131

    Article  CAS  PubMed  Google Scholar 

  54. Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326

    Article  PubMed  Google Scholar 

  55. Sibson NR (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B 354:1155–1163

    Article  CAS  Google Scholar 

  57. Dalsgaard MK, Ide K, Cai Y et al (2002) The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans. J Physiol 540:681–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Pellerin L, Bouzier-Sore AK, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262

    Article  PubMed  Google Scholar 

  59. Braitenberg V, Schüz A (1998) Density of neurons and synapses. In: Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin Heidelberg, pp 23–39

    Chapter  Google Scholar 

  60. Waldvogel D (2000) The relative metabolic demand of excitation and inhibition. Nature 406:995–998

    Article  CAS  PubMed  Google Scholar 

  61. Weeks RA, Gerloff C, Dalakas M, Hallett M (1999) PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls. Exp Brain Res 128:291–302

    Article  CAS  PubMed  Google Scholar 

  62. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  CAS  PubMed  Google Scholar 

  63. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75

    Article  CAS  PubMed  Google Scholar 

  64. Benazzouz A, Gao DM, Ni ZG et al (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99(2):289–295

    Article  CAS  PubMed  Google Scholar 

  65. van den Heuvel P, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141

    Article  PubMed  Google Scholar 

  66. Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Chang SY, Kim I, Marsh MP (2012) Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin Proc 87(8):760–765

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lyons MK (2011) Deep brain stimulation: current and future clinical applications. Mayo Clin Proc 86(7):662–672

    Article  PubMed Central  PubMed  Google Scholar 

  69. Schiffer WK, Mirrione MM, Biegon A et al (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155(2):272–284

    Article  CAS  PubMed  Google Scholar 

  70. van Luijtelaar G, Huang L (2013) Brain computer interface for epilepsy treatment—recent progress and future prospects. In: InTech open science—open minds 239–252. doi:10.5772/55800

Download references

Acknowledgments

This work is funded by iMinds and Ghent University. Prof. Dr. Roel Van Holen is supported by the Research Foundation, Flanders, Belgium (FWO). Prof. Dr. Christian Vanhove is supported by the GROUP-ID consortium of Ghent University. Prof. Dr. P. Boon is supported by grants from FWO and grants from BOF and by the Clinical Epilepsy Grant from Ghent University Hospital.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Van Den Berge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Den Berge, N., Keereman, V., Vanhove, C. et al. Hippocampal Deep Brain Stimulation Reduces Glucose Utilization in the Healthy Rat Brain. Mol Imaging Biol 17, 373–383 (2015). https://doi.org/10.1007/s11307-014-0801-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0801-9

Key words

Navigation