Skip to main content
Log in

The Relationship Between Serial [18 F]PBR06 PET Imaging of Microglial Activation and Motor Function Following Stroke in Mice

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Using [18 F]PBR06 positron emission tomography (PET) to characterize the time course of stroke-associated neuroinflammation (SAN) in mice, to evaluate whether brain microglia influences motor function after stroke, and to demonstrate the use of [18 F]PBR06 PET as a therapeutic assessment tool.

Procedures

Stroke was induced by transient middle cerebral artery occlusion (MCAO) in Balb/c mice (control, stroke, and stroke with poststroke minocycline treatment). [18 F]PBR06 PET/CT imaging, rotarod tests, and immunohistochemistry (IHC) were performed 3, 11, and 22 days poststroke induction (PSI).

Results

The stroke group exhibited significantly increased microglial activation, and impaired motor function. Peak microglial activation was 11 days PSI. There was a strong association between microglial activation, motor function, and microglial protein expression on IHC. Minocycline significantly reduced microglial activation and improved motor function by day 22 PSI.

Conclusion

[18 F]PBR06 PET imaging noninvasively characterizes the time course of SAN, and shows increased microglial activation is associated with decreased motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Coull BM (2007) Inflammation and stroke—introduction. Stroke 38:631

    Article  Google Scholar 

  2. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Milner R (2009) Microglial expression of alphavbeta3 and alphavbeta5 integrins is regulated by cytokines and the extracellular matrix: beta5 integrin null microglia show no defects in adhesion or MMP-9 expression on vitronectin. Glia 57:714–723

    Article  PubMed  Google Scholar 

  4. Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Fan Y, Won SJ et al (2007) Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38:146–152

    Article  CAS  PubMed  Google Scholar 

  6. Barreto G, Huang TT, Giffard RG (2010) Age-related defects in sensorimotor activity, spatial learning, and memory in C57BL/6 mice. J Neurosurg Anesthesiol 22:214–219

    Article  PubMed Central  PubMed  Google Scholar 

  7. Palmer TD, Monje ML, Toda H (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  PubMed  Google Scholar 

  8. Tatemichi TK, Desmond DW, Stern Y et al (1994) Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J Neurol Neurosurg Psychiatry 57:202–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Papadopoulos V, Baraldi M, Guilarte TR et al (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409

    Article  CAS  PubMed  Google Scholar 

  10. James ML, Fulton RR, Vercoullie J et al (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822

    Article  CAS  PubMed  Google Scholar 

  11. Gerhard A, Neumaier B, Elitok E et al (2000) In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 11:2957–2960

    Article  CAS  PubMed  Google Scholar 

  12. Cagnin A, Kassiou M, Meikle SR, Banati RB (2007) Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4:443–452

    Article  CAS  PubMed  Google Scholar 

  13. Imaizumi M, Kim HJ, Zoghbi SS et al (2007) PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett 411:200–205

    Article  CAS  PubMed  Google Scholar 

  14. James ML, Fulton RR, Henderson DJ et al (2005) Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem 13:6188–6194

    Article  CAS  PubMed  Google Scholar 

  15. Yui J, Hatori A, Kawamura K et al (2011) Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [11C]DAC with ultra-high specific activity. Neuroimage 54:123–130

    Article  CAS  PubMed  Google Scholar 

  16. Yui J, Maeda J, Kumata K et al (2010) 18 F-FEAC and 18 F-FEDAC: PET of the monkey brain and imaging of translocator protein (18 kDa) in the infarcted rat brain. J Nucl Med 51:1301–1309

    Article  CAS  PubMed  Google Scholar 

  17. Lartey FM, Ahn GO, Shen B et al (2014) PET imaging of stroke-induced neuroinflammation in mice using [F]PBR06. Mol Imaging Biol 16(1):109–117

  18. Martin A, Boisgard R, Kassiou M, Dolle F, Tavitian B (2011) Reduced PBR/TSPO expression after minocycline treatment in a rat model of focal cerebral ischemia: a pet study using [F-18]DPA-714. Mol Imaging Biol 13:10–15

    Article  PubMed  Google Scholar 

  19. Liu ZY, Fan Y, Won SJ et al (2007) Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38:146–152

    Article  CAS  PubMed  Google Scholar 

  20. Briard E, Zoghbi SS, Simeon FG et al (2009) Single-step high-yield radiosynthesis and evaluation of a sensitive 18 F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem 52:688–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mao Y, Yang GY, Zhou LF, Stern JD, Betz AL (1999) Focal cerebral ischemia in the mouse: description of a model and effects of permanent and temporary occlusion. Brain Res Mol Brain Res 63:366–370

    Article  CAS  PubMed  Google Scholar 

  22. Sakata H, Niizuma K, Yoshioka H et al (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32:3462–3473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lartey FM, Ahn GO, Shen B et al (2014) PET imaging of stroke-induced neuroinflammation in mice using [(18)F]PBR06. Mol Imaging Biol: MIB: Off Publ Acad Mol Imaging 16:109–117

    Article  Google Scholar 

  24. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  CAS  PubMed  Google Scholar 

  25. Habte F, Ren G, Doyle TC et al (2013) Impact of a multiple mice holder on quantitation of high-throughput micropet imaging with and without Ct attenuation correction. Mol Imaging Biol 15:569–575

    Article  PubMed  Google Scholar 

  26. Graves EE, Quon A, Loo BW Jr (2007) RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 6:111–121

    Article  PubMed  Google Scholar 

  27. Yui J, Hatori A, Kawamura K et al (2011) Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [C-11]DAC with ultra-high specific activity. Neuroimage 54:123–130

    Article  CAS  PubMed  Google Scholar 

  28. Carson MJ, Bilousova TV, Puntambekar SS et al (2007) A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 4:571–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Martin A, Boisgard R, Theze B et al (2010) Evaluation of the PBR/TSPO radioligand [F-18]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30:230–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  31. Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Perego C, De Fumagalli S, Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174. doi:10.1186/1742B2094B8B174

  33. Martin A, Boisgard R, Theze B et al (2010) Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30:230–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Breckwoldt MO, Chen JW, Stangenberg L et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105:18584–18589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. d'Avila JC, Lam TI, Bingham D et al (2012) Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J Neuroinflammation 9:31

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rupalla K, Allegrini PR, Sauer D, Wiessner C (1998) Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol 96:172–178

    Article  CAS  PubMed  Google Scholar 

  37. Zhang ZG, Zhang L, Jiang Q et al (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rueger MA, Muesken S, Walberer M et al (2012) Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience 215:174–183

    Article  CAS  PubMed  Google Scholar 

  39. Hayakawa K, Mishima K, Nozako M et al (2008) Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke 39:951–958

    Article  CAS  PubMed  Google Scholar 

  40. Converse AK, Larsen EC, Engle JW et al (2011) C-11-(R)-PK11195 PET imaging of microglial activation and response to minocycline in Zymosan-treated rats. J Nucl Med 52:257–262

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Stanford Center for Innovation in In-Vivo Imaging.

Sources of Funding

Sources of funds were Stanford Bio-X Interdisciplinary Initiatives Program (IIP) Award and Cancer Research Award (to BWL), an NCI ICMIC P50 Award (CA114747 to Dr. Sanjiv Sam Gambhir), an AHA Grant (AHA-0835274 N to RG), a CIRM Grant (RC1-0134 to TDP), NRF and the Ministry of Education, Science and Technology, Korea grants (R31-10105 and NRF-2012M3A9C6049796 to GOA), the Li Ka Shing Foundation and the Department of Radiation Oncology, Stanford University.

Conflict of Interest

The authors declare they have no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Billy W. Loo Jr. or Edward Graves.

Additional information

Frederick M. Lartey and G-One Ahn are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lartey, F.M., Ahn, GO., Ali, R. et al. The Relationship Between Serial [18 F]PBR06 PET Imaging of Microglial Activation and Motor Function Following Stroke in Mice. Mol Imaging Biol 16, 821–829 (2014). https://doi.org/10.1007/s11307-014-0745-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0745-0

Key words

Navigation