Skip to main content

Advertisement

Log in

Breast Cancer Cells Imaging By Targeting Methionine Transporters with Gadolinium-Based Nanoprobe

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Early cancer diagnosis using MRI imaging is of high global interest as a non-invasive and powerful modality. In this study, methionine was conjugated on gadolinium-based mesoporous silica nanospheres to evaluate intra-cellular uptake and its accumulation in human breast cancer cells.

Procedures

The contrast agent was synthesized and characterized using different techniques including N2 physisorption, thermal gravimetric analysis, dynamic light scattering, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The intra-cellular uptake of Gd3+ was measured by ICP-AES, fluorescent microscopy, and flow cytometry. Finally, cellular and tumor MR imaging were performed to determine in vitro and in vivo relaxometry.

Results

According to the results, the contrast agents accumulated in tumor cells both in vitro and in vivo. There was no significant cellular toxicity on either normal or cancer cells along with strong intense signal on T 1 compared to the unlabeled cells.

Conclusions

The results showed that the novel contrast agent could become a useful tool in early detection of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ananta JS, Godin B, Sethi R et al (2010) Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotec 5:815–821

    Article  CAS  Google Scholar 

  2. Taylor KML, Kim JS, Rieter WJ et al (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130:2154–2155

    Article  CAS  PubMed  Google Scholar 

  3. Crich SG, Claudia Cabella C, Barge A et al (2006) In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes. J Med Chem 49:4926–4936

    Article  CAS  Google Scholar 

  4. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Del Rev 60:1252–1265

    Article  CAS  Google Scholar 

  5. Slowing II, Trewyn BG, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Del Rev 60:1278–1288

    Article  CAS  Google Scholar 

  6. De la Fuente JM, Penad’es S (2006) Glyconanoparticles: Types, synthesis and applications in glycoscience, biomedicine and material science. Biochem Biophys Acta 1760:636–651

    Article  PubMed  Google Scholar 

  7. Shen Z, Li Y, Kohama K et al (2011) Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res 63:51–58

    Article  CAS  PubMed  Google Scholar 

  8. Eva M, Arto U (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174

    Article  Google Scholar 

  9. Hyde R, Taylor PM, Hundal HS (2003) Amino acid transporters: roles in amino acid sensing and signaling in animal cells. Biochem J 373:1–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Graf R, Plotkin M, Nyuyki F et al (2012) Contribution of (18)f-fluoro-ethyl-tyrosine positron emission tomography to target volume delineation in stereotactic radiotherapy of malignant cranial base tumours: first clinical experience. Int J Mol Imaging. doi:10.1155/2012/412585

    PubMed Central  PubMed  Google Scholar 

  11. Khosroshahi AG, Amanlou M, Sabzevari O et al (2013) A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging. Cur Med Chem 20:123–133

    Article  CAS  Google Scholar 

  12. Singhal T, Narayanan TK, Jain V et al (2008) 11C-L-Methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18

    Article  PubMed  Google Scholar 

  13. Dankerl A, Liebisch P, Glatting G et al (2007) Molecular imaging with 11C-methionine PET/CT initial experience. Radiology 242:498–509

    Article  PubMed  Google Scholar 

  14. Schmieder AH, Winter PM, Caruthers SD et al (2005) Molecular MR imaging of melanoma angiogenesis with alphavbeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627

    Article  CAS  PubMed  Google Scholar 

  15. Winter PM, Caruthers SD, Kassner A et al (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alphavbeta3-targeted nanoparticle. Cancer Res 63:5838–5843

    CAS  PubMed  Google Scholar 

  16. Radu DR (2004) Gatekeeping layer effect: a poly (lactic acid)-coated mesoporous silica nanosphere- based flourescence probe for detection of amino-containing neurotransmitters. J Am Chem Soc 126:1640–1641

    Article  CAS  PubMed  Google Scholar 

  17. Mehravi B, Ahmadi M, Amanlou M et al (2013) Conjugation of glucosamine on Gd3+ based nanoporous silica using heterobifunctional crosslinker (ANB-NOS) for cancer cell imaging. Int J Nanomed 8:3383–3394

    Article  Google Scholar 

  18. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging. Acc Chem Res 44:925–935

    Article  CAS  PubMed  Google Scholar 

  19. Rieter W, Kim JS, Taylor KML et al (2007) Hybrid silica nanoparticles for multimodal imaging. Ange Chem Int Ed 46:3680–3682

    Article  CAS  Google Scholar 

  20. An Y, Xue MCQ, Liua W (2007) Preparation and self-assembly of carboxylic acid functionalized silica. J Colloid Interface Sci 311:507–513

    Article  CAS  PubMed  Google Scholar 

  21. Mehravi B, Ahmadi M, Amanlou M et al (2013) Cellular uptake and imaging studies of glycosylated silica nanoprobe (GSN) in human colon adenocarcinoma (HT 29 Cell line). Int J Nanomed 8:3209–3215

    Article  Google Scholar 

  22. Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41- type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792–14793

    Article  CAS  PubMed  Google Scholar 

  23. Cho Y, Shi R, Borgens RB et al (2008) Functionalized mesoporous silica nanoparticles-based drug delivery system to rescue acrolein-mediated cell death. Nanomed 3(4):507–519

    Article  CAS  Google Scholar 

  24. Amanlou M, Siadat SD, Ebrahimi SES et al (2011) Gd3+ -DTPA-DG: novel nanosized dual anticancer and molecular imaging agent. Int J Nanomed 6:747–763

    Article  CAS  Google Scholar 

  25. Huang DM, Hung Y, Ko BS et al (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19:2014–2016

    Article  CAS  PubMed  Google Scholar 

  26. Mirzaei M, Mohagheghi MA, Shahbazi-Gahrouei D (2012) Novel nanosized Gd3+-ALGD-G2-C595: in vivo dual selective MUC-1 positive tumor molecular MR imaging and therapeutic agent. J Nanomed Nanotechol 3:1–6

    Article  Google Scholar 

  27. Huang X, Teng X, Chen D et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448

    Article  CAS  PubMed  Google Scholar 

  28. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Research council of Tehran University of Medical Science. We thank Mr. Behroz Rafiei for his valuable help with the 3T MRI scanner.

Conflict of Interest

All authors declare that they have no conflicts of interest associated with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Amanlou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1211 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehravi, B., Ardestani, M.S., Damercheli, M. et al. Breast Cancer Cells Imaging By Targeting Methionine Transporters with Gadolinium-Based Nanoprobe. Mol Imaging Biol 16, 519–528 (2014). https://doi.org/10.1007/s11307-014-0718-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0718-3

Key words

Navigation