Skip to main content

Advertisement

Log in

Examining Changes in [18 F]FDG and [18 F]FLT Uptake in U87-MG Glioma Xenografts as Early Response Biomarkers to Treatment with the Dual mTOR1/2 Inhibitor AZD8055

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The mTOR kinase inhibitor AZD8055 inhibits both mTORC1 and mTORC2 leading to disruption of glucose metabolism and proliferation pathways. This study assessed the impact of single and multiple doses of AZD8055 on the uptake of the glucose metabolism marker 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG) and the proliferation marker 3′-deoxy-3′-[18 F]fluorothymidine ([18 F]FLT) in U87-MG glioma xenografts.

Procedures

Mice bearing U87-MG tumours received either vehicle or AZD8055 (20 mg/kg) once daily p.o. Mice were imaged with either [18 F]FDG or [18 F]FLT PET to assess treatment response. Comparisons were made between in vivo imaging and ex vivo histopathology data.

Results

Tumour uptake of [18 F]FDG was reduced by 33 % 1 h after a single dose of AZD8055 and by 49 % following 4 days of dosing. These changes coincided with suppression of the mTOR pathway biomarkers pS6 and pAKT. In contrast, the effect of AZD8055 on [18 F]FLT uptake was inconsistent.

Conclusions

The very rapid change in [18 F]FDG uptake following acute AZD8055 treatment suggests that this could be used as an early mechanistic biomarker of metabolic changes resulting from mTOR inhibition. The utility of [18 F]FLT for measuring the anti-proliferative effect of AZD8055 remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. García-Martínez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385

    Article  PubMed  Google Scholar 

  2. O'Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    Article  PubMed Central  PubMed  Google Scholar 

  3. Cloughesy TF, Yoshimoto K, Nghiemphu P et al (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5:e8

    Article  PubMed Central  PubMed  Google Scholar 

  4. Marshall G, Howard Z, Dry J et al (2011) Benefits of mTOR kinase targeting in oncology: pre-clinical evidence with AZD8055. Biochem Soc Trans 39:456–459

    Article  CAS  PubMed  Google Scholar 

  5. Sylvie M, Guichard ZH et al (2012) AZD2014, a dual mTORC1 and mTORC2 inhibitor is differentiated from allosteric inhibitors of mTORC1 in ER+ breast cancer. Cancer Res 72(8):Suppl 1

    Google Scholar 

  6. Smith GC, Ong WK, Rewcastle GW et al (2012) Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo. Biochem J 442:161–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Eary JF, O’Sullivan F, Powitan Y, Chandhury KR et al (2002) Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29:1149–1154

    Article  CAS  PubMed  Google Scholar 

  8. Weber WA. (2009) Assessing tumor response to therapy. J Nucl Med.;501S-10S.

  9. Benz MR, Czernin J, Tap WD et al (2010) FDG-PET/CT imaging predicts histopathologic treatment responses after neoadjuvant therapy in adult primary bone sarcomas. Sarcoma. doi:10.1155/2010/143540

    PubMed Central  PubMed  Google Scholar 

  10. Shinto A, Nair N, Dutt A, Baghel NS (2008) Early response assessment in gastrointestinal stromal tumors with FDG PET scan 24 hours after a single dose of imatinib. Clin Nucl Med 33:486–487

    Article  PubMed  Google Scholar 

  11. Thomas GV, Tran C, Mellinghoff IK et al (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127

    Article  CAS  PubMed  Google Scholar 

  12. Cejka D, Kuntner C, Preusser M et al (2009) FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo. British J Cancer 2(100):1739–1745

    Article  Google Scholar 

  13. Wei LH, Su H, Hildebrandt IJ et al (2008) Changes in tumor metabolism as readout for mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma. Clin Cancer Res 14:3416–3426

    Article  CAS  PubMed  Google Scholar 

  14. Ma WW, Jacene H, Song D et al (2009) [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. Clin Oncol 1(27):2697–2704

    Article  Google Scholar 

  15. Troost EG, Bussink J, Hoffmann AL et al (2010) 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51:866–874

    Article  PubMed  Google Scholar 

  16. Solit D, Santos E, Pratilas DA et al (2007) 3-Deoxy-3-[18 F]fluorothymidine positron emission tomography is a sensitive method for imaging the response of BRAF dependent tumors to MEK inhibition. Cancer Res 67:11463–11469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Benz MR, Czernin J, Allen-Auerbach MS et al (2012) 3′-Deoxy-3′[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118:3135–3144

    Article  PubMed Central  PubMed  Google Scholar 

  18. Workman P, Twentyman P, Balkwill F et al (1998) United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (Second edition). Br J Cancer 77:1–10

    Google Scholar 

  19. Keen H, Pichler B, Kukuk D et al (2012) An evaluation of 2-deoxy-2-[18F]fluoro-d-glucose and 3′-deoxy-3′-[18F]-fluorothymidine uptake in human tumor xenograft models. Mol Imaging Biol 14:355–365

    Article  PubMed  Google Scholar 

  20. Bao Q, Newport D, Chen M et al (2009) Performance evaluation of the Inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50:401–408

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gambhir S. Quantitative assay development for PET. Chapter 2 in Phelps, Michael E (Ed.) PET: molecular imaging and its biological applications. Springer; 2004

  22. Chresta CM, Davies BR, Hickson I et al (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 1(70):288–298

    Article  Google Scholar 

  23. Lee SC, Marzec M, Liu X et al (2012) Decreased lactate concentration and glycolytic enzyme expression reflect inhibition of mTOR signal transduction pathway in B-cell lymphoma. NMR Biomed. doi:10.1002/nbm.2825

    Google Scholar 

  24. Nguyen QD, Perumal M, Waldman TA, Aboagye EO (2011) Glucose metabolism measured by [18F]fluorodeoxyglucose positron emission tomography is independent of PTEN/AKT status in human colon carcinoma cells. Transl Oncol 4:241–248

    Article  PubMed Central  PubMed  Google Scholar 

  25. Aide N, Kinross K, Cullinane C et al (2010) 18F-FLT PET as a surrogate marker of drug efficacy during mTOR inhibition by everolimus in a preclinical cisplatin-resistant ovarian tumor model. J Nucl Med 51:1559–1564

    Article  PubMed  Google Scholar 

  26. McKinley ET, Ayers GD, Smith RA et al (2013) Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One 8:e58938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Soloviev D, Lewis D, Honess D, Aboagye E (2012) [18 F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48:416–424

    Article  CAS  PubMed  Google Scholar 

  28. Chalkidou A, Landau DB, Odell EW et al (2012) Correlation between Ki-67 immunohistochemistry and 18 F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer 48:3499–3513. doi:10.1016/j.ejca.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  29. Waterton JC, Pylkkanen L (2012) Qualification of imaging biomarkers for oncology drug development. Eur J Cancer 48:409–415

    Article  CAS  PubMed  Google Scholar 

  30. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    Article  CAS  PubMed  Google Scholar 

  31. Cheebsumon P, Velasquez LM, Hoekstra CJ et al (2011) Measuring response to therapy using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol Imaging 38:832–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Maynard J, Ricketts SA, Gendrin C et al (2013) 2-Deoxy-2-[18 F]fluoro-d-glucose positron emission tomography demonstrates target inhibition with the potential to predict anti-tumour activity following treatment with the AKT inhibitor AZD5363. Mol Imaging Biol. Mol Imaging Biol 15:476–485

    Article  PubMed  Google Scholar 

  33. Schnell CR, Stauffer F, Allegrini PR et al (2008) Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res 68:6598–6607

    Article  CAS  PubMed  Google Scholar 

  34. Saito K, Matsumoto S, Yasui H et al (2012) Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin. PLoS One 7:e49456. doi:10.1371/journal.pone.0049456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Guimaraes AR, Ross R, Figuereido JL et al (2011) MRI with magnetic nanoparticles monitors downstream anti-angiogenic effects of mTOR inhibition. Mol Imaging Biol 13h:314–320

    Article  Google Scholar 

Download references

Conflict of Interest

All authors are employees of AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather G. Keen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keen, H.G., Ricketts, SA., Maynard, J. et al. Examining Changes in [18 F]FDG and [18 F]FLT Uptake in U87-MG Glioma Xenografts as Early Response Biomarkers to Treatment with the Dual mTOR1/2 Inhibitor AZD8055. Mol Imaging Biol 16, 421–430 (2014). https://doi.org/10.1007/s11307-013-0705-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0705-0

Key words

Navigation