Real-Time Assessment of Ultrasound-Mediated Drug Delivery Using Fibered Confocal Fluorescence Microscopy

Abstract

Purpose

Transport across the plasma membrane is a critical step of drug delivery for weakly permeable compounds with intracellular mode of action. The purpose of this study is to demonstrate real-time monitoring of ultrasound (US)-mediated cell-impermeable model drug uptake with fibered confocal fluorescence microscopy (FCFM).

Procedures

An in vitro setup was designed to combine a mono-element US transducer, a cell chamber with a monolayer of tumor cells together with SonoVue microbubbles, and a FCFM system. The cell-impermeable intercalating dye, SYTOX Green, was used to monitor US-mediated uptake.

Results

The majority of the cell population showed fluorescence signal enhancement 10 s after US onset. The mean rate constant k of signal enhancement was calculated to be 0.23 ± 0.04 min−1.

Conclusions

Feasibility of real-time monitoring of US-mediated intracellular delivery by FCFM has been demonstrated. The method allowed quantitative assessment of model drug uptake, holding great promise for further local drug delivery studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Yeh ETH (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    PubMed  Article  Google Scholar 

  3. 3.

    Krishna R, Yu L (2008) Biopharmaceutics applications in drug development. Springer, New York

    Google Scholar 

  4. 4.

    Skauen DM, Zentner GM (1984) Phonophoresis. Int J Pharm 20:235–245

    Article  CAS  Google Scholar 

  5. 5.

    Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131–1154

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255–260

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Sundaram J, Mellein BR, Mitragotri S (2003) An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 84:3087–3101

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Ter Haar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111–129

    PubMed  Article  Google Scholar 

  9. 9.

    Krasovitski B, Frenkel V, Shoham S et al (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. PNAS 108(8):3258–3263

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ogawa K, Tachibana K, Uchida T et al (2001) High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound. Med Electron Microscopy 34:249–253

    Article  CAS  Google Scholar 

  11. 11.

    Mehier-Humbert S, Bettinger T, Yan F et al (2005) Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 104(1):213–222

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    White NS, Errington RJ (2005) Fluorescence techniques for drug delivery research: theory and practice. Adv Drug Deliv Rev 57:17–42

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Staruch R, Chopra R, Hynynen K (2011) Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 27(2):156–171

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Deckers R, Yudina A, Cardoit LC et al (2011) A fluorescent chromophore TOTO-3 as a “smart probe” for the assessment of ultrasound-mediated local drug delivery in vivo. Contrast Media Mol Imaging 6:267–274

    PubMed  CAS  Google Scholar 

  16. 16.

    Chin CT, Lancee C, Borsboom J et al (2003) Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev Sci Instrum 74:5026–5034

    Article  CAS  Google Scholar 

  17. 17.

    Van Wamel A, Kooiman K, Harteveld M et al (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112:149–155

    PubMed  Article  Google Scholar 

  18. 18.

    Kooiman K, Foppen-Harteveld M, Van der Steen AFW et al (2011) Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release 154:35–41

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Al-Gubory KH, Houdebine LM (2006) In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Eur J Cell Biol 85:837–845

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Luciani A, Wilhelm C, Bruneval P et al (2009) Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol 19:1087–1096

    PubMed  Article  Google Scholar 

  21. 21.

    Lin KY, Maricevich M, Bardeesy N et al (2008) In vivo quantitative microvasculature phenotype imaging of healthy and malignant tissues using a fiber-optic confocal laser microprobe. Transl Oncol 1:84–94

    PubMed  Article  Google Scholar 

  22. 22.

    Yudina A, Lepetit-Coiffé M, Moonen CTW (2010) Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement. Mol Imaging Biol 13:239–249

    Article  Google Scholar 

  23. 23.

    Lepetit-Coiffé M, Yudina A, Lourenço de Oliveira P et al (2009) Correlation of ultrasound-mediated drug delivery with acoustical properties of the transducer by macroscopic fluorescence imaging. ISTUarticlet, Aix-en-Provence, France

    Google Scholar 

  24. 24.

    Greis C (2004) Technology overview: SonoVue (Bracco, Milan). Eur Radiol 14:11–15

    Article  Google Scholar 

  25. 25.

    Sung KB, Richards-Kortum R, Follen M et al (2003) Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo. Opt Express 11:3171–3181

    PubMed  Article  Google Scholar 

  26. 26.

    Hallow DM, Mahajan AD, Prausnitz MR (2007) Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 118:285–293

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Papenfuss HD, Gross JF, Intaglietta M et al (1979) A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18:311–318

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Lehr HA, Leunig M, Menger MD et al (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143:1055–1062

    PubMed  CAS  Google Scholar 

  29. 29.

    Horowitz SB (1972) The permeability of the amphibian oocyte nucleus, in situ. J Cell Biol 54:609–625

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Ann Rev Cell Biol 4:335–374

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Huber PE, Pfisterer P (2000) In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 7:1516–1525

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Yudina A, de Smet M, Lepetit-Coiffé M et al (2011) Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J Control Release 155:442–448

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. J.R. Cazalets and colleagues (INCIA UMR 5287/University Bordeaux 2, France) for letting us use their cell culture facility. This study was supported by EU project SonoDrugs (FP7-NMP4-LA-2008-213706), ERC project 268906 “Sound Pharma”, and Foundation InNaBioSanté—project ULTRAFITT.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chrit Moonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 21268 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Derieppe, M., Yudina, A., Lepetit-Coiffé, M. et al. Real-Time Assessment of Ultrasound-Mediated Drug Delivery Using Fibered Confocal Fluorescence Microscopy. Mol Imaging Biol 15, 3–11 (2013). https://doi.org/10.1007/s11307-012-0568-9

Download citation

Key Words

  • Drug delivery
  • Biological barrier
  • Plasma membrane permeabilization
  • Ultrasound bioeffects
  • Fibered confocal fluorescence microscopy
  • Pharmacokinetic parameters
  • SYTOX Green
  • US-mediated drug delivery