Untargeted metabolomics as a hypothesis-generation tool in plant protection product discovery: Highlighting the potential of trehalose and glycerol metabolism of fungal conidiospores as novel targets

Abstract

Introduction

The production of high quality and safe food represents a main priority for the agri-food sector in the effort to sustain the exponentially growing human population. Nonetheless, there are major challenges that require the discovery of new, alternative, and improved plant protection products (PPPs). Focusing on fungal plant pathogens, the dissection of mechanisms that are essential for their survival provides insights that could be exploited towards the achievement of the aforementioned aim. In this context, the germination of fungal spores, which are essential structures for their dispersal, survival, and pathogenesis, represents a target of high potential for PPPs. To the best of our knowledge, no PPPs that target the germination of fungal spores currently exist.

Objectives

Within this context, we have mined for changes in the metabolite profiles of the model fungus Aspergillus nidulans FGSC A4 conidiospores during germination, in an effort to discover key metabolites and reactions that could potentially become targets of PPPs.

Methods

Untargeted GC/EI-TOF/MS metabolomics and multivariate analyses were employed to monitor time-resolved changes in the metabolomes of germinating A. nidulans conidiospores.

Results

Analyses revealed that trehalose hydrolysis plays a pivotal role in conidiospore germination and highlighted the osmoregulating role of the sugar alcohols, glycerol, and mannitol.

Conclusion

The ineffectiveness to introduce active ingredients that exhibit new mode(s)-of-action as fungicides, dictates the urge for the discovery of PPPs, which could be exploited to combat major plant protection issues. Based on the crucial role of trehalose hydrolysis in conidiospore dormancy breakage, and the subsequent involvement of glycerol in their germination, it is plausible to suggest their biosynthesis pathways as potential novel targets for the next-generation antifungal PPPs. Our study confirmed the applicability of untargeted metabolomics as a hypothesis-generation tool in PPPs’ research and discovery.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source for glycerol that is biosynthesized immediately after 1 h and consumed in the course of germination. Similar changes of mannitol abundance indicate a possible osmoregulation role of polyols in early conidiospore germination. Sugars and Krebs cycle intermediates accumulate transiently during polarity establishment and germ tube emergence at 5–6 h of germination. Six biological replications were analyzed for each time point

Fig. 6

source and c minimal media (MM) without carbon source. The arrows indicate representative germinated conidiospores. In the upper right corner, a magnified image of the conidiospores is displayed. Results indicate that A. nidulans conidiospores are able to germinate in sterilized H2O. However, in the absence of carbon and nitrogen sources the germination terminates. In the second row the corresponding treatments (d-f) with the addition of 20 μg mL−1 Validamycin A are shown. No visible differences were observed

Data availability

“The metabolomics and metadata reported in this paper are available via Metabolights www.ebi.ac.uk/metabolights/MTBLS1565

References

  1. Akram, M. (2014). Citric acid cycle and role of its intermediates in metabolism. Cell Biochemistry and Biophysics,68, 475–478. https://doi.org/10.1007/s12013-013-9750-1.

    CAS  Article  PubMed  Google Scholar 

  2. Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2011). Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics,7, 35–53. https://doi.org/10.1007/s11306-010-0231-x.

    CAS  Article  Google Scholar 

  3. Aliferis, K. A., Cubeta, M. A., & Jabaji, S. (2013). Chemotaxonomy of fungi in the Rhizoctonia solani species complex performing GC/MS metabolite profiling. Metabolomics,9, 159–169. https://doi.org/10.1007/s11306-011-0340-1.

    CAS  Article  Google Scholar 

  4. Aliferis, K. A., & Jabaji, S. (2010). 1H NMR and GC-MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia. Metabolomics,6, 96–108. https://doi.org/10.1007/s11306-009-0180-4.

    CAS  Article  Google Scholar 

  5. Aliferis, K. A., & Jabaji, S. (2011). Metabolomics–A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pesticide Biochemistry and Physiology,100, 105–117. https://doi.org/10.1016/j.pestbp.2011.03.004.

    CAS  Article  Google Scholar 

  6. Aliferis, K. A., & Jabaji, S. (2012). FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout's responses to Rhizoctonia solani infection. PLoS ONE,7, e42576. https://doi.org/10.1371/journal.pone.0042576.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics. Metabolomics,5, 479–496. https://doi.org/10.1007/s11306-009-0169-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Alshannaq, A., & Yu, J.-H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health,14, 632–652. https://doi.org/10.3390/ijerph14060632.

    CAS  Article  PubMed Central  Google Scholar 

  9. Amaike, S., & Keller, N. P. (2011). Aspergillus flavus. Annual Review of Phytopathology,49, 107–133. https://doi.org/10.1146/annurev-phyto-072910-095221.

    CAS  Article  PubMed  Google Scholar 

  10. Amillis, S., Cecchetto, G., Sophianopoulou, V., Koukaki, M., Scazzocchio, C., & Diallinas, G. (2004). Transcription of purine transporter genes is activated during the isotropic growth phase of Aspergillus nidulans conidia. Molecular Microbiology,52, 205–216. https://doi.org/10.1046/j.1365-2958.2003.03956.x.

    CAS  Article  PubMed  Google Scholar 

  11. Anastassiadou, M., Brancato, A., Brocca, D., Carrasco Cabrera, L., Ferreira, L., Greco, L., et al. (2019). Reporting data on pesticide residues in food and feed according to Regulation (EC) No 396/2005 (2018 data collection). EFSA Journal,17, e05655. https://doi.org/10.2903/j.efsa.2017.4792.

    Article  Google Scholar 

  12. Baltussen, T. J. H., Coolen, J. P. M., Zoll, J., Verweij, P. E., & Melchers, W. J. G. (2018). Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia. Fungal Genetics and Biology,116, 62–72. https://doi.org/10.1016/j.fgb.2018.04.013.

    CAS  Article  PubMed  Google Scholar 

  13. Bayram, Ö., Feussner, K., Dumkow, M., Herrfurth, C., Feussner, I., & Braus, G. H. (2016). Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology,87, 30–53. https://doi.org/10.1016/j.fgb.2016.01.004.

    CAS  Article  PubMed  Google Scholar 

  14. Bennett, J. W. (2007). An overview of the genus Aspergillus. In G. H. Goldman & S. A. Osmani (Eds.), The Aspergilli: Genomics, medical aspects, biotechnology, and research methods (pp. 23–34). Portland: Caiser Academic Press.

    Google Scholar 

  15. Bennett, J. W. (2009). Aspergillus: A primer for the novice. Medical Mycology,47, S5–S12. https://doi.org/10.1080/13693780802712515.

    Article  PubMed  Google Scholar 

  16. Blomberg, A., & Adler, L. (1992). Physiology of osmotolerance in fungi. In A. H. Rose (Ed.), Advances in microbial physiology (pp. 145–212). Amsterdam: Elsevier.

    Google Scholar 

  17. Bougouffa, S., Radovanovic, A., Essack, M., & Bajic, V. B. (2014). DEOP: A database on osmoprotectants and associated pathways. Database (Oxford),2014, 1–13. https://doi.org/10.1093/database/bau100.

    CAS  Article  Google Scholar 

  18. Brandl, J., & Andersen, M. R. (2017). Aspergilli: Models for systems biology in filamentous fungi. Current Opinion in Systems Biology,6, 67–73. https://doi.org/10.1016/j.coisb.2017.09.005.

    Article  Google Scholar 

  19. Canelas, A. B., Ras, C., ten Pierick, A., van Dam, J. C., Heijnen, J. J., & van Gulik, W. M. (2008). Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics,4, 226–239. https://doi.org/10.1007/s11306-008-0116-4.

    CAS  Article  Google Scholar 

  20. Cheli, F., Battaglia, D., Gallo, R., & Dell'Orto, V. (2014). EU legislation on cereal safety: An update with a focus on mycotoxins. Food Control,37, 315–325. https://doi.org/10.1016/j.foodcont.2013.09.059.

    CAS  Article  Google Scholar 

  21. Chen, A. J., Frisvad, J. C., Sun, B. D., Varga, J., Kocsubé, S., Dijksterhuis, J., et al. (2016). Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Studies in Mycology,84, 1–118. https://doi.org/10.1016/j.simyco.2016.10.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, X., Lu, Y., Fan, Y. and Shen, Y. (2017). Bioactivities of Validamycins and Related Natural Compounds. In Chen, X., Lu, Y., Fan, Y. and Shen, Y. (Eds), Validamycin and its Derivatives (pp. 115–164). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100999-4.00003-4

  23. Croft, C. A., Culibrk, L., Moore, M. M., & Tebbutt, S. J. (2016). Interactions of Aspergillus fumigatus Conidia with airway epithelial cells: A critical review. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.00472.

    Article  PubMed  PubMed Central  Google Scholar 

  24. d'Enfert, C. (1997). Fungal spore germination: Insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genetics and Biology,21, 163–172. https://doi.org/10.1006/fgbi.1997.0975.

    CAS  Article  Google Scholar 

  25. d'Enfert, C., Bonini, B. M., Zapella, P. D. A., Fontaine, T., Da Silva, A. M., & Terenzi, H. F. (1999). Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Molecular Microbiology,32, 471–483. https://doi.org/10.1046/j.1365-2958.1999.01327.x.

    CAS  Article  PubMed  Google Scholar 

  26. d'Enfert, C., & Fontaine, T. (1997). Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Molecular Microbiology,24, 203–216. https://doi.org/10.1046/j.1365-2958.1997.3131693.x.

    CAS  Article  PubMed  Google Scholar 

  27. Del Sorbo, G., Schoonbeek, H.-J., & De Waard, M. A. (2000). Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genetics and Biology,30, 1–15. https://doi.org/10.1006/fgbi.2000.1206.

    Article  PubMed  Google Scholar 

  28. Dethloff, F., Erban, A., Orf, I., Alpers, J., Fehrle, I., Beine-Golovchuk, O., et al. (2014). Profiling methods to identify cold-regulated primary metabolites using gas chromatography coupled to mass spectrometry. In D. Hincha & E. Zuther (Eds.), Plant cold acclimation (pp. 171–197). New York: Humana Press.

    Google Scholar 

  29. Diallinas, G. (2017). Transceptors as a functional link of transporters and receptors. Microbial Cell,4, 69–73. https://doi.org/10.15698/mic2017.03.560.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duke, S. O. (2012). Why have no new herbicide modes of action appeared in recent years? Pest Management Science,68, 505–512. https://doi.org/10.1002/ps.2333.

    CAS  Article  PubMed  Google Scholar 

  31. Duke, S. O., & Dayan, F. E. (2015). Discovery of new herbicide modes of action with natural phytotoxins. In P. Maienfisch & T. M. Stevenson (Eds.), Discovery and synthesis of crop protection products (pp. 79–92). Washington, DC: American Chemical Society.

    Google Scholar 

  32. Fiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., et al. (2007). The metabolomics standards initiative (MSI). Metabolomics,3, 175–178. https://doi.org/10.1007/s11306-007-0070-6.

    CAS  Article  Google Scholar 

  33. Fillet, M., & Frédérich, M. (2015). The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discovery Today: Technologies,13, 19–24. https://doi.org/10.1016/j.ddtec.2015.01.006.

    Article  PubMed  Google Scholar 

  34. Fisher, M. C., Hawkins, N. J., Sanglard, D., & Gurr, S. J. (2018). Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science,360, 739–742. https://doi.org/10.1126/science.aap7999.

    CAS  Article  PubMed  Google Scholar 

  35. FRAC. (2019). FRAC Code List 2019. Retrieved March 17, 2020, from https://www.frac.info/.

  36. Frisvad, J. C., & Larsen, T. O. (2015). Chemodiversity in the genus Aspergillus. Applied Microbiology and Biotechnology,99, 7859–7877. https://doi.org/10.1007/s00253-015-6839-z.

    CAS  Article  PubMed  Google Scholar 

  37. Gilland, B. (2002). World population and food supply: Can food production keep pace with population growth in the next half-century? Food Policy,27, 47–63. https://doi.org/10.1016/S0306-9192(02)00002-7.

    Article  Google Scholar 

  38. Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., & Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta—Biomembranes,1788, 1213–1228. https://doi.org/10.1016/j.bbamem.2009.03.009.

    CAS  Article  Google Scholar 

  39. Guirao-Abad, J. P., Sánchez-Fresneda, R., Valentín, E., Martínez-Esparza, M., & Argüelles, J.-C. (2013). Analysis of validamycin as a potential antifungal compound against Candida albicans. International Microbiology: The Official Journal of the Spanish Society for Microbiology,16, 217–225. https://doi.org/10.2436/20.1501.01.197.

    CAS  Article  Google Scholar 

  40. Hautbergue, T., Jamin, E. L., Debrauwer, L., Puel, O., & Oswald, I. P. (2018). From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Natural Product Reports,35, 147–173. https://doi.org/10.1039/C7NP00032D.

    CAS  Article  PubMed  Google Scholar 

  41. Heinekamp, T., Thywissen, A., Macheleidt, J., Keller, S., Valiante, V., & Brakhage, A. (2013). Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00440.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hillocks, R. J. (2012). Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Protection,31, 85–93. https://doi.org/10.1016/j.cropro.2011.08.008.

    Article  Google Scholar 

  43. Horikoshi, K., & Ikeda, Y. (1966). Trehalase in conidia of Aspergillus oryzae. Journal of Bacteriology,91, 1883–1887.

    CAS  Article  Google Scholar 

  44. Ishii, H., & Hollomon, D.W. (2015). Fungicide resistance in plant pathogens. Principles and a guide to practical management. Tokyo: Springer, p. 481. https://doi.org/10.1007/978-4-431-55642-8.

    Google Scholar 

  45. Ishikawa, R., Shirouzu, K., Nakashita, H., Lee, H.-Y., Motoyama, T., Yamaguchi, I., et al. (2005). Foliar spray of validamycin a or validoxylamine a controls tomato fusarium wilt. Phytopathology,95, 1209–1216. https://doi.org/10.1094/phyto-95-1209.

    CAS  Article  PubMed  Google Scholar 

  46. Iturriaga, G., Suárez, R., & Nova-Franco, B. (2009). Trehalose metabolism: From osmoprotection to signaling. International Journal of Molecular Sciences,10, 3793–3810. https://doi.org/10.3390/ijms10093793.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Jampílek, J., & Kráľová, K. (2019). Nanobiopesticides in agriculture: State of the art and future opportunities. In O. Koul (Ed.), Nano-biopesticides today and future perspectives (pp. 397–447). New York: Academic Press.

    Google Scholar 

  48. Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology,17, 451–459. https://doi.org/10.1038/nrm.2016.25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Junker, B. H., Klukas, C., & Schreiber, F. (2006). VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics,7, 109. https://doi.org/10.1186/1471-2105-7-109.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Kalampokis, I. F., & Aliferis, K. A. (2020). Metabolomics in Aspergillus research: Potential and applications in biotechnology, industry, medicine, and crop protection. In S. Kintzios & S. Mavrikou (Eds.), Aflatoxins: Biochemistry, toxicology, public health, policies and modern methods of analysis. Hauppauge, NY: Nova Science Publishers.

    Google Scholar 

  51. Kalampokis, I. F., Kapetanakis, G. C., Aliferis, K. A., & Diallinas, G. (2018). Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans. Fungal Genetics and Biology,115, 52–63. https://doi.org/10.1016/j.fgb.2018.02.004.

    CAS  Article  PubMed  Google Scholar 

  52. Karamanou, D. A., & Aliferis, K. A. (2019). The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: Evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2019.09.013.

    Article  PubMed  Google Scholar 

  53. Karaoglanidis, G. S., Markoglou, A. N., Bardas, G. A., Doukas, E. G., Konstantinou, S., & Kalampokis, J. F. (2011). Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production. International Journal of Food Microbiology,145, 195–204. https://doi.org/10.1016/j.ijfoodmicro.2010.12.017.

    CAS  Article  PubMed  Google Scholar 

  54. Kitchen, P., Day, R. E., Salman, M. M., Conner, M. T., Bill, R. M., & Conner, A. C. (2015). Beyond water homeostasis: Diverse functional roles of mammalian aquaporins. Biochimica et Biophysica Acta,1850, 2410–2421. https://doi.org/10.1016/j.bbagen.2015.08.023.

    CAS  Article  PubMed  Google Scholar 

  55. Kjærbølling, I., Vesth, T. C., Frisvad, J. C., Nybo, J. L., Theobald, S., Kuo, A., et al. (2018). Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proceedings of the National Academy of Sciences,115, E753–E761. https://doi.org/10.1073/pnas.1715954115.

    CAS  Article  Google Scholar 

  56. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics,21, 1635–1638. https://doi.org/10.1093/bioinformatics/bti236.

    CAS  Article  PubMed  Google Scholar 

  57. Koukaki, M., Giannoutsou, E., Karagouni, A., & Diallinas, G. (2003). A novel improved method for Aspergillus nidulans transformation. Journal of Microbiological Methods,55, 687–695. https://doi.org/10.1016/S0167-7012(03)00208-2.

    CAS  Article  PubMed  Google Scholar 

  58. Kreida, S., & Törnroth-Horsefield, S. (2015). Structural insights into aquaporin selectivity and regulation. Current Opinion in Structural Biology,33, 126–134. https://doi.org/10.1016/j.sbi.2015.08.004.

    CAS  Article  PubMed  Google Scholar 

  59. Lai, Z., Tsugawa, H., Wohlgemuth, G., Mehta, S., Mueller, M., Zheng, Y., et al. (2017). Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nature Methods,15, 53. https://doi.org/10.1038/nmeth.4512.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Lamarre, C., Sokol, S., Debeaupuis, J.-P., Henry, C., Lacroix, C., Glaser, P., et al. (2008). Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics,9, 417. https://doi.org/10.1186/1471-2164-9-417.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics,24, 732–737. https://doi.org/10.1093/bioinformatics/btn023.

    CAS  Article  PubMed  Google Scholar 

  62. Luedemann, A., von Malotky, L., Erban, A., & Kopka, J. (2012). TagFinder: Preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. In N. W. Hardy & R. D. Hall (Eds.), Plant metabolomics: Methods and protocols (pp. 255–286). Totowa, NJ: Humana Press.

    Google Scholar 

  63. Malandrakis, A. A., Markoglou, A. N., Konstantinou, S., Doukas, E. G., Kalampokis, J. F., & Karaoglanidis, G. S. (2013). Molecular characterization, fitness and mycotoxin production of benzimidazole-resistant isolates of Penicillium expansum. International Journal of Food Microbiology,162, 237–244. https://doi.org/10.1016/j.ijfoodmicro.2013.01.014.

    CAS  Article  PubMed  Google Scholar 

  64. Malandrakis, A. A., Vattis, K. N., Markoglou, A. N., & Karaoglanidis, G. S. (2017). Characterization of boscalid-resistance conferring mutations in the SdhB subunit of respiratory complex II and impact on fitness and mycotoxin production in Penicillium expansum laboratory strains. Pesticide Biochemistry and Physiology,138, 97–103. https://doi.org/10.1016/j.pestbp.2017.03.009.

    CAS  Article  PubMed  Google Scholar 

  65. Markoglou, A. N., Doukas, E. G., & Malandrakis, A. A. (2011). Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare. International Journal of Food Microbiology,146, 130–136. https://doi.org/10.1016/j.ijfoodmicro.2011.02.009.

    CAS  Article  PubMed  Google Scholar 

  66. Momany, M. (2002). Polarity in filamentous fungi: establishment, maintenance and new axes. Current Opinion in Microbiology,5, 580–585. https://doi.org/10.1016/S1369-5274(02)00368-5.

    CAS  Article  PubMed  Google Scholar 

  67. Momany, M., & Taylor, I. (2000). Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation. Microbiology,146, 3279–3284. https://doi.org/10.1099/00221287-146-12-3279.

    CAS  Article  PubMed  Google Scholar 

  68. Nega, A. (2014). Review on concepts in biological control of plant pathogens. Journal of Biology, Agriculture and Healthcare,4, 33–54.

    Google Scholar 

  69. Nevoigt, E., & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews,21, 231–241. https://doi.org/10.1016/S0168-6445(97)00058-2.

    CAS  Article  PubMed  Google Scholar 

  70. Nielsen, K. F., Mogensen, J. M., Johansen, M., Larsen, T. O., & Frisvad, J. C. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry,395, 1225–1242. https://doi.org/10.1007/s00216-009-3081-5.

    CAS  Article  PubMed  Google Scholar 

  71. Nierman, W. C., May, G., Kim, H. S., Anderson, M. J., Chen, D., & Denning, D. W. (2005). What the Aspergillus genomes have told us. Medical Mycology,43, S3–S5. https://doi.org/10.1080/13693780400029049.

    CAS  Article  PubMed  Google Scholar 

  72. Novodvorska, M., Hayer, K., Pullan, S. T., Wilson, R., Blythe, M. J., Stam, H., et al. (2013). Transcriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genomics,14, 246. https://doi.org/10.1186/1471-2164-14-246.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Novodvorska, M., Stratford, M., Blythe, M. J., Wilson, R., Beniston, R. G., & Archer, D. B. (2016). Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth. Fungal Genetics and Biology,94, 23–31. https://doi.org/10.1016/j.fgb.2016.07.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Osherov, N., & May, G. (2000). Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics,155, 647–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Osherov, N., & May, G. S. (2001). The molecular mechanisms of conidial germination. FEMS Microbiology Letters,199, 153–160. https://doi.org/10.1111/j.1574-6968.2001.tb10667.x.

    CAS  Article  PubMed  Google Scholar 

  76. Paulussen, C., Hallsworth, J. E., Álvarez-Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., et al. (2017). Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial Biotechnology,10, 296–322. https://doi.org/10.1111/1751-7915.12367.

    Article  PubMed  Google Scholar 

  77. Pelkonen, O., Bennekou, S. H., Crivellente, F., Terron, A., & Hernandez, A. F. (2019). Integration of epidemiological findings with mechanistic evidence in regulatory pesticide risk assessment: EFSA experiences. Archives of Toxicology. https://doi.org/10.1007/s00204-019-02467-w.

    Article  PubMed  Google Scholar 

  78. Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: Prevalence, mechanisms, and management. The Lancet Infectious Diseases,17, e383–e392. https://doi.org/10.1016/S1473-3099(17)30316-X.

    Article  PubMed  Google Scholar 

  79. Pettersson, N., Filipsson, C., Becit, E., Brive, L., & Hohmann, S. (2005). Aquaporins in yeasts and filamentous fungi. Biology of the Cell,97, 487–500. https://doi.org/10.1042/BC20040144.

    CAS  Article  PubMed  Google Scholar 

  80. Prior, B., & Hohmann, S. (1997). Glycerol production and osmoregulation. In F. K. Zimmermann & K.-D. Entian (Eds.), Yeast sugar metabolism (pp. 313–337). Pennsylvania: Technomic Publishing Co.

    Google Scholar 

  81. Ramírez-Camejo, L. A., Zuluaga-Montero, A., Lázaro-Escudero, M., Hernández-Kendall, V., & Bayman, P. (2012). Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biology,116, 452–463. https://doi.org/10.1016/j.funbio.2012.01.006.

    Article  PubMed  Google Scholar 

  82. Reed, R. H., Chudek, J., Foster, R., & Gadd, G. (1987). Osmotic significance of glycerol accumulation in exponentially growing yeasts. Applied Environmental Microbiology,53, 2119–2123.

    CAS  Article  Google Scholar 

  83. Robson, G. D., Kuhn, P. J., & Trinci, A. P. (1988). Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. Microbiology,134, 3187–3194. https://doi.org/10.1099/00221287-134-12-3187.

    CAS  Article  Google Scholar 

  84. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., Klapperstück, M., et al. (2012). VANTED v2: A framework for systems biology applications. BMC Systems Biology,6, 139. https://doi.org/10.1186/1752-0509-6-139.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ruijter, G. J. G., Bax, M., Patel, H., Flitter, S. J., van de Vondervoort, P. J. I., de Vries, R. P., et al. (2003). Mannitol is required for stress tolerance in Aspergillus niger Conidiospores. Eukaryotic Cell,2, 690–698. https://doi.org/10.1128/ec.2.4.690-698.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H. W., et al. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology,78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Scazzocchio, C. (2019). Aspergillus: A multifaceted genus. In T. M. Schmidt (Ed.), Encyclopedia of microbiology (4th ed., pp. 262–292). Oxford: Academic Press.

    Google Scholar 

  88. Schäfer, R. B., Liess, M., Altenburger, R., Filser, J., Hollert, H., Roß-Nickoll, M., et al. (2019). Future pesticide risk assessment: Narrowing the gap between intention and reality. Environmental Sciences Europe,31, 21. https://doi.org/10.1186/s12302-019-0203-3.

    Article  Google Scholar 

  89. Scharf, D. H., Heinekamp, T., & Brakhage, A. A. (2014). Human and plant fungal pathogens: The role of secondary metabolites. PLoS Pathogens,10, e1003859. https://doi.org/10.1371/journal.ppat.1003859.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Schneider, U. A., Havlík, P., Schmid, E., Valin, H., Mosnier, A., Obersteiner, M., et al. (2011). Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems,104, 204–215. https://doi.org/10.1016/j.agsy.2010.11.003.

    Article  Google Scholar 

  91. Sephton-Clark, P. C. S., & Voelz, K. (2018). Spore germination of pathogenic filamentous fungi. In S. Sariaslani & G. M. Gadd (Eds.), Advances in applied microbiology (pp. 117–157). San Diego: Academic Press.

    Google Scholar 

  92. Shen, B., Hohmann, S., Jensen, R. G., & Bohnert, H. J. (1999). Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology,121, 45–52. https://doi.org/10.1104/pp.121.1.45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Shukla, P., Chaurasia, P., Younis, K., Qadri, O. S., Faridi, S. A., & Srivastava, G. (2019). Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering,4, 11. https://doi.org/10.1007/s41204-019-0058-2.

    Article  Google Scholar 

  94. Singh, A., Bhardwaj, R. and Singh, I.K. (2019). Biocontrol agents: Potential of biopesticides for integrated pest management. In B. Giri, R. Prasad, Q.-S. Wu and A. Varma (Eds), Biofertilizers for sustainable agriculture and environment (pp. 413–433). Springer. https://doi.org/10.1007/978-3-030-18933-4_19

  95. Solomon, P. S., Waters, O. D. C., & Oliver, R. P. (2007). Decoding the mannitol enigma in filamentous fungi. Trends in Microbiology,15, 257–262. https://doi.org/10.1016/j.tim.2007.04.002.

    CAS  Article  PubMed  Google Scholar 

  96. Soveral, G., Prista, C., Moura, T. F., & Loureiro-Dias, M. C. (2011). Yeast water channels: An overview of orthodox aquaporins. Biology of the Cell,103, 35–54. https://doi.org/10.1042/bc20100102.

    CAS  Article  Google Scholar 

  97. Srivastava, R., Awasthi, K., & Tripathi, D. (2018). Nanotechnology towards sustainable agriculture. Nanotechnology,6, 155–158. https://doi.org/10.26438/ijsrpas/v6i6.155158.

    Article  Google Scholar 

  98. Steyfkens, F., Zhang, Z., Van Zeebroeck, G., & Thevelein, J. M. (2018). Multiple transceptors for macro- and micro-nutrients control diverse cellular properties through the PKA pathway in yeast: A paradigm for the rapidly expanding world of eukaryotic nutrient transceptors up to those in human cells. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2018.00191.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Storck, V., Karpouzas, D. G., & Martin-Laurent, F. (2017). Towards a better pesticide policy for the European Union. Science of the Total Environment,575, 1027–1033. https://doi.org/10.1016/j.scitotenv.2016.09.167.

    CAS  Article  PubMed  Google Scholar 

  100. Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC–MS metabolite profiling. Journal of Chromatography B,871, 182–190. https://doi.org/10.1016/j.jchromb.2008.04.042.

    CAS  Article  Google Scholar 

  101. Svanström, Å., & Melin, P. (2013). Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Research in Microbiology,164, 91–99. https://doi.org/10.1016/j.resmic.2012.10.018.

    CAS  Article  PubMed  Google Scholar 

  102. Takata, K., Matsuzaki, T., & Tajika, Y. (2004). Aquaporins: water channel proteins of the cell membrane. Progress in Histochemistry and Cytochemistry,39, 1–83. https://doi.org/10.1016/j.proghi.2004.03.001.

    CAS  Article  PubMed  Google Scholar 

  103. Teutschbein, J., Albrecht, D., Pötsch, M., Guthke, R., Aimanianda, V., Clavaud, C., et al. (2010). Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. Journal of Proteome Research,9, 3427–3442. https://doi.org/10.1021/pr9010684.

    CAS  Article  PubMed  Google Scholar 

  104. Tischler, B. Y., & Hohl, T. M. (2019). Menacing mold: Recent advances in Aspergillus pathogenesis and host defense. Journal of Molecular Biology. https://doi.org/10.1016/j.jmb.2019.03.027.

    Article  PubMed  Google Scholar 

  105. Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods,12, 523–526. https://doi.org/10.1038/nmeth.3393.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Turgeman, T., Shatil-Cohen, A., Moshelion, M., Teper-Bamnolker, P., Skory, C. D., Lichter, A., et al. (2016). The role of aquaporins in pH-dependent germination of Rhizopus delemar spores. PLoS ONE,11, e0150543–e0150543. https://doi.org/10.1371/journal.pone.0150543.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Valiante, V., Macheleidt, J., Föge, M., & Brakhage, A. A. (2015). The Aspergillus fumigatus cell wall integrity signaling pathway: Drug target, compensatory pathways, and virulence. Frontiers in Microbiology,6, 325. https://doi.org/10.3389/fmicb.2015.00325.

    Article  PubMed  PubMed Central  Google Scholar 

  108. van Laere, A. J., & Hulsmans, E. (1987). Water potential, glycerol synthesis, and water content of germinating Phycomyces spores. Archives of Microbiology,147, 257–262. https://doi.org/10.1007/bf00463485.

    Article  Google Scholar 

  109. van Leeuwen, M. R., Krijgsheld, P., Bleichrodt, R., Menke, H., Stam, H., Stark, J., et al. (2013). Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Studies in Mycology,74, 59–70. https://doi.org/10.3114/sim0009.

    Article  PubMed  Google Scholar 

  110. Verkman, A. S. (2013). Aquaporins. Current Biology,23, R52–R55. https://doi.org/10.1016/j.cub.2012.11.025.

    CAS  Article  PubMed  Google Scholar 

  111. Wang, Y. E., Kutnetsov, L., Partensky, A., Farid, J., & Quackenbush, J. (2017). WebMeV: A cloud platform for analyzing and visualizing cancer genomic data. Cancer Research,77, e11–e14. https://doi.org/10.1158/0008-5472.CAN-17-0802.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Watanabe, M., Tohge, T., Balazadeh, S., Erban, A., Giavalisco, P., Kopka, J., et al. (2018). Comprehensive metabolomics studies of plant developmental senescence. In Y. Guo (Ed.), Plant senescence: Methods and protocols (pp. 339–358). New York: Springer.

    Google Scholar 

  113. Worrall, E., Hamid, A., Mody, K., Mitter, N., & Pappu, H. (2018). Nanotechnology for plant disease management. Agronomy,8, 285. https://doi.org/10.3390/agronomy8120285.

    CAS  Article  Google Scholar 

  114. Wu, F. (2015). Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin Journal,8, 137–142. https://doi.org/10.3920/wmj2014.1737.

    Article  Google Scholar 

  115. Yang, J., Li, J., Jiang, Y., Duan, X., Qu, H., Yang, B., et al. (2014). Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Critical Reviews in Food Science and Nutrition,54, 64–83. https://doi.org/10.1080/10408398.2011.569860.

    CAS  Article  PubMed  Google Scholar 

  116. Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E., & James, A. (2019). Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food and Agriculture,5, 1601544. https://doi.org/10.1080/23311932.2019.1601544.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical and laboratory support of the GC/EI-TOF/MS analyses by Ines Fehrle.

Funding

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information

Affiliations

Authors

Contributions

IFK, KAA, SA, and GD designed the study and performed literature research. IFK performed experimental research. IFK, KAA, AE, and JK analyzed data and performed statistical analysis. IFK, GD, JK, and KAA wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Konstantinos A. Aliferis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involved human and animal participants

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalampokis, I.F., Erban, A., Amillis, S. et al. Untargeted metabolomics as a hypothesis-generation tool in plant protection product discovery: Highlighting the potential of trehalose and glycerol metabolism of fungal conidiospores as novel targets. Metabolomics 16, 79 (2020). https://doi.org/10.1007/s11306-020-01699-7

Download citation

Keywords

  • Conidiospore germination inhibition
  • Fungal metabolomics
  • Osmoregulators