Skip to main content

Advertisement

Log in

Metabolomics to reveal biomarkers and pathways of preterm birth: a systematic review and epidemiologic perspective

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Most known risk factors for preterm birth, a leading cause of infant morbidity and mortality, are not modifiable. Advanced molecular techniques are increasingly being applied to identify biomarkers and pathways important in disease development and progression.

Objectives

We review the state of the literature and assess it from an epidemiologic perspective.

Methods

PubMed, Embase, CINAHL, and Cochrane Central were searched on January 31, 2019 for original articles published after 1998 that utilized an untargeted metabolomic approach to identify markers of preterm birth. Eligible manuscripts were peer-reviewed and included original data from untargeted metabolomics analyses of maternal tissue derived from human studies designed to determine mechanisms and predictors of preterm birth.

Results

Of 2823 results, 14 articles met the inclusion requirements. There was little consistency in study design, outcome definition, type of biospecimen, or the inclusion of covariates and confounding factors, and few consistent associations with metabolites were identified in this review.

Conclusion

Studies to date on metabolomic predictors of preterm birth are highly heterogeneous in both methodology and resulting metabolite identification. There is an urgent need for larger studies in well-defined populations, to determine biomarkers predictive of preterm birth, and to reveal mechanisms and targets for development of intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data reported in this review is freely available through database search using the included search terms. No dataset is available online.

References

  • Baraldi, E., Giordano, G., Stocchero, M., Moschino, L., Zaramella, P., Tran, M. R., et al. (2016). Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS ONE, 11, e0164211.

    Article  Google Scholar 

  • Bartel, J., Krumsiek, J., & Theis, F. J. (2013). Statistical methods for the analysis of high-throughput metabolomics data. Computational and Structural Biotechnology Journal, 4, e201301009.

    Article  Google Scholar 

  • Beger, R. D., Dunn, W. B., Bandukwala, A., Bethan, B., Broadhurst, D., Clish, C. B., et al. (2019). Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics, 15, 4.

    Article  Google Scholar 

  • Beger, R. D., Dunn, W., Schmidt, M. A., Gross, S. S., Kirwan, J. A., Cascante, M., et al. (2016). Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics, 12, 149.

    Article  Google Scholar 

  • Begum, J., Samal, S. K., Ghose, S., & Niranjan, G. (2017). Vaginal fluid urea and creatinine in the diagnosis of premature rupture of membranes in resource limited community settings. Journal of Family and Reproductive Health, 11, 43–49.

    PubMed  Google Scholar 

  • Brodsky, I. E., & Medzhitov, R. (2009). Targeting of immune signalling networks by bacterial pathogens. Nature Cell Biology, 11, 521–526.

    Article  CAS  Google Scholar 

  • Cecatti, J. G., Souza, R. T., Sulek, K., Costa, M. L., Kenny, L. C., McCowan, L. M., et al. (2016). Use of metabolomics for the identification and validation of clinical biomarkers for preterm birth: Preterm SAMBA. BMC Pregnancy Childbirth, 16, 212.

    Article  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Guillaume, Bourque, et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.

    Article  CAS  Google Scholar 

  • Dennis, K. K., Marder, E., Balshaw, D. M., Cui, Y., Lynes, M. A., Patti, G. J., et al. (2017). Biomonitoring in the era of the exposome. Environmental Health Perspectives, 125, 502–510.

    Article  CAS  Google Scholar 

  • Diaz, S. O., Barros, A. S., Goodfellow, B. J., Duarte, I. F., Galhano, E., Pita, C., et al. (2013). Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. Journal of Proteome Research, 12, 2946–2957.

    Article  CAS  Google Scholar 

  • Diaz, S. O., Pinto, J., Graca, G., Duarte, I. F., Barros, A. S., Galhano, E., et al. (2011). Metabolic biomarkers of prenatal disorders: An exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. Journal of Proteome Research, 10, 3732–3742.

    Article  CAS  Google Scholar 

  • Fotiou, M., Fotakis, C., Tsakoumaki, F., Athanasiadou, E., Kyrkou, C., Dimitropoulou, A., et al. (2018). (1)H NMR-based metabolomics reveals the effect of maternal habitual dietary patterns on human amniotic fluid profile. Scientific Reports, 8, 4076.

    Article  Google Scholar 

  • Ghartey, J., Anglim, L., Romero, J., Brown, A., & Elovitz, M. A. (2017). Women with symptomatic preterm birth have a distinct cervicovaginal metabolome. American Journal Perinatology, 34, 1078–1083.

    Article  Google Scholar 

  • Ghartey, J., Bastek, J. A., Brown, A. G., Anglim, L., & Elovitz, M. A. (2015). Women with preterm birth have a distinct cervicovaginal metabolome. American Journal of Obstetrics and Gynecology, 212, 776.e1–776.e12.

    Article  Google Scholar 

  • Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S. O., Pinto, J., et al. (2010). Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: A nuclear magnetic resonance metabonomic study. Journal of Proteome Research, 9, 6016–6024.

    Article  CAS  Google Scholar 

  • Graca, G., Goodfellow, B. J., Barros, A. S., Diaz, S., Duarte, I. F., Spagou, K., et al. (2012). UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Molecular BioSystems, 8, 1243–1254.

    Article  CAS  Google Scholar 

  • Hallman, M., Saugstad, O. D., Porreco, R. P., Epstein, B. L., & Gluck, L. (1985). Role of myoinositol in regulation of surfactant phospholipids in the newborn. Early Human Development, 10, 245–254.

    Article  CAS  Google Scholar 

  • Halscott, T. L., Ramsey, P. S., & Reddy, U. M. (2014). First trimester screening cannot predict adverse outcomes yet. Prenatal Diagnosis, 34, 668–676.

    PubMed  Google Scholar 

  • Hassan, S. S., Romero, R., Vidyadhari, D., Fusey, S., Baxter, J. K., Khandelwal, M., et al. (2011). Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: A multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound in Obstetrics and Gynecology, 38, 18–31.

    Article  CAS  Google Scholar 

  • Henderson, J., Carson, C., & Redshaw, M. (2016). Impact of preterm birth on maternal well-being and women’s perceptions of their baby: A population-based survey. British Medical Journal Open, 6, e012676.

    Google Scholar 

  • Howards, P. P., Schisterman, E. F., & Heagerty, P. J. (2007). Potential confounding by exposure history and prior outcomes: An example from perinatal epidemiology. Epidemiology, 18, 544–551.

    Article  Google Scholar 

  • Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17, 451–459.

    Article  CAS  Google Scholar 

  • Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Research, 47, D590–D595.

    Article  CAS  Google Scholar 

  • Kariman, N., Afrakhte, M., Hedayati, M., Fallahian, M., & Alavi Majd, H. (2013). Diagnosis of premature rupture of membranes by assessment of urea and creatinine in vaginal washing fluid. Iranian Journal of Reproductive Medicine, 11, 93–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, K. A., Petrou, S., Dritsaki, M., Johnson, S. J., Manktelow, B., Draper, E. S., et al. (2015). Economic costs associated with moderate and late preterm birth: A prospective population-based study. BJOG, 122, 1495–1505.

    Article  CAS  Google Scholar 

  • Leite, D. F. B., Morillon, A. C., Melo Junior, E. F., Souza, R. T., Khashan, A. S., Baker, P. N., et al. (2018). Metabolomics for predicting fetal growth restriction: Protocol for a systematic review and meta-analysis. British Medical Journal Open, 8, e022743.

    Google Scholar 

  • Li, J., Lu, Y. P., Reichetzeder, C., Kalk, P., Kleuser, B., Adamski, J., et al. (2016). Maternal PCaaC38:6 is Associated With Preterm Birth—A Risk Factor for Early and Late Adverse Outcome of the Offspring. Kidney and Blood Pressure Research, 41, 250–257.

    Article  CAS  Google Scholar 

  • Liebler, D. C. (2008). Protein damage by reactive electrophiles: Targets and consequences. Chemical Research in Toxicology, 21, 117–128.

    Article  CAS  Google Scholar 

  • Lizewska, B., Teul, J., Kuc, P., Lemancewicz, A., Charkiewicz, K., Goscik, J., et al. (2018). Maternal plasma metabolomic profiles in spontaneous preterm birth: Preliminary results. Mediators of Inflammation, 2018, 9362820.

    Article  Google Scholar 

  • Luan, H., Meng, N., Liu, P., Fu, J., Chen, X., Rao, W., et al. (2015). Non-targeted metabolomics and lipidomics LC-MS data from maternal plasma of 180 healthy pregnant women. Gigascience, 4, 16.

    Article  Google Scholar 

  • Lucaroni, F., Morciano, L., Rizzo, G., Buonuomo, E., Palombi, L., & Arduini, D. (2018). Biomarkers for predicting spontaneous preterm birth: An umbrella systematic review. Journal of Maternal-Fetal & Neonatal Medicine, 31, 726–734.

    Article  CAS  Google Scholar 

  • Maitre, L., Fthenou, E., Athersuch, T., Coen, M., Toledano, M. B., Holmes, E., et al. (2014). Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Medicine, 12, 110.

    Article  Google Scholar 

  • Matthews, T. J., & MacDorman, M. F. (2013). Infant mortality statistics from the 2010 period linked birth/infant death data set. National Vital Statistics Reports, 62, 1–26.

    CAS  PubMed  Google Scholar 

  • Menon, R., Jones, J., Gunst, P. R., Kacerovsky, M., Fortunato, S. J., Saade, G. R., et al. (2014). Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reproductive Sciences, 21, 791–803.

    Article  Google Scholar 

  • Menon, S., & Manning, B. D. (2013). Cell signalling: Nutrient sensing lost in cancer. Nature, 498, 444–445.

    Article  CAS  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62, 1006–1012.

    Article  Google Scholar 

  • Mwaniki, M. K., Atieno, M., Lawn, J. E., & Newton, C. R. (2012). Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet, 379, 445–452.

    Article  Google Scholar 

  • NCBI. (2007). Societal costs of preterm birth in Behrman. In R. E. Behrman & A. S. Butler (Eds.), Preterm birth: Causes, consequences, and prevention (pp. 298–429). Washington, DC: National Academies Press (US).

    Google Scholar 

  • Orczyk-Pawilowicz, M., Jawien, E., Deja, S., Hirnle, L., Zabek, A., & Mlynarz, P. (2016). Metabolomics of human amniotic fluid and maternal plasma during normal pregnancy. PLoS ONE, 11, e0152740.

    Article  Google Scholar 

  • Poole, C. (1999). Controls who experienced hypothetical causal intermediates should not be excluded from case-control studies. American Journal of Epidemiology, 150(6), 547–551.

    Article  CAS  Google Scholar 

  • Rankings, A.S.H. (2018) Public health impact: Preterm birth. America’s Health Rankings

  • Rappaport, S. M. (2012). Biomarkers intersect with the exposome. Biomarkers, 17, 483–489.

    Article  CAS  Google Scholar 

  • Rappaport, S. M. (2018). Redefining environmental exposure for disease etiology. NPJ Systems Biology and Applications, 4, 30.

    Article  Google Scholar 

  • Rappaport, S. M., Barupal, D. K., Wishart, D., Vineis, P., & Scalbert, A. (2014). The blood exposome and its role in discovering causes of disease. Environmental Health Perspectives, 122, 769–774.

    Article  Google Scholar 

  • Rappaport, S. M., & Smith, M. T. (2010). Environment and disease risks. Science, 330, 460–461.

    Article  CAS  Google Scholar 

  • Romero, R., Dey, S. K., & Fisher, S. J. (2014). Preterm labor: One syndrome, many causes. Science, 345, 760–765.

    Article  CAS  Google Scholar 

  • Romero, R., Mazaki-Tovi, S., Vaisbuch, E., Kusanovic, J. P., Chaiworapongsa, T., Gomez, R., et al. (2010). Metabolomics in premature labor: A novel approach to identify patients at risk for preterm delivery. Journal of Maternal-Fetal & Neonatal Medicine, 23, 1344–1359.

    Article  CAS  Google Scholar 

  • Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern Epidemiology, Third (Edition ed.). Philadelphia, PA: Wolters Kluwer.

    Google Scholar 

  • Sumner, S., Pathmasiri, W., Carlson, J. E., McRitchie, S. L., & Fennell, T. R. (2018). Metabolomics. In R. Smart (Ed.), Molecular and Biochemical Toxicology (pp. 181–199). Hoboken: Wiley.

    Google Scholar 

  • Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., et al. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 368, 1575–1584.

    Article  CAS  Google Scholar 

  • Thomas, M. M., Sulek, K., McKenzie, E. J., Jones, B., Han, T. L., Villas-Boas, S. G., et al. (2015). Metabolite profile of cervicovaginal fluids from early pregnancy is not predictive of spontaneous preterm birth. International Journal of Molecular Sciences, 16, 27741–27748.

    Article  CAS  Google Scholar 

  • Townsend, M. K., Bao, Y., Poole, E. M., Bertrand, K. A., Kraft, P., Wolpin, B. M., et al. (2016). Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiology, Biomarkers and Prevention, 25, 823–829.

    Article  CAS  Google Scholar 

  • Vineis, P., Chadeau-Hyam, M., Gmuender, H., Gulliver, J., Herceg, Z., Kleinjans, J., et al. (2017). The exposome in practice: Design of the EXPOsOMICS project. International Journal of Hygiene and Environmental Health, 220, 142–151.

    Article  CAS  Google Scholar 

  • Virgiliou, C., Gika, H. G., Witting, M., Bletsou, A. A., Athanasiadis, A., Zafrakas, M., et al. (2017). Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. Journal of Proteome Research, 16, 898–910.

    Article  CAS  Google Scholar 

  • von Elm, A. D. E., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & STROBE Initiative. (2008). The strengthening the reporting of observational studies in epidemiology (STROBE)statement: Guidelines for reporting observational studies. Journal of Clinical Epidemiology, 61, 344–349.

    Article  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63.

    Article  CAS  Google Scholar 

  • Wishart, D., Feunang, Y., Marcu, A., Guo, A., & Liang, K. (2018). HMDB 4.0—The human metabolome database for 2018. Nucleic Acids Research, 46(D1), 608–617.

    Article  Google Scholar 

  • Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., et al. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37, 153–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Elaine Hicks, Tulane Science Library Resource Librarian for her help in forming the search terms for this review.

Funding

This work was funded by NICHD Grant R21HD087878 (Harville, PI), NIDDK Grant U24DK097193-01 (Sumner, PI), and NIEHS grant U19 ES019525-01 (Sumner, Co-I).

Author information

Authors and Affiliations

Authors

Contributions

EM, SM, SS conceived of the concept of the review. KP and RAC conducted the literature search. KP, RAC, and EM analyzed the search results and wrote the paper. RAC, KP, EM, SM, and SS were involved in revision.

Corresponding author

Correspondence to K. Pan.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, R.A., Pan, K., Harville, E.W. et al. Metabolomics to reveal biomarkers and pathways of preterm birth: a systematic review and epidemiologic perspective. Metabolomics 15, 124 (2019). https://doi.org/10.1007/s11306-019-1587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1587-1

Keywords

Navigation