Skip to main content

Advertisement

Log in

Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The process of tomato (Solanum lycopersicum) breeding has affected negatively the fruit organoleptic properties and this is evident when comparing modern cultivars with heirloom varieties. Flavor of tomato fruit is determined by a complex combination of volatile and nonvolatile metabolites that is not yet understood.

Objectives

The aim of this work was to provide an alternative approach to exploring the relationship between tomato odour/taste and volatile organic compounds (VOCs).

Methods

VOC composition and organoleptic properties of seven Andean tomato landraces along with an edible wild species (Solanum pimpinellifolium) and four commercial varieties were characterized. Six hedonic traits were analyzed by a semitrained sensory panel to describe the organoleptic properties. Ninety-four VOCs were analyzed by headspace solid phase microextraction/gas chromatography–mass spectrometry (HS/SPME/GC–MS). The relationship between sensory data and VOCs was explored using an Artificial Neural Networks model (Kohonen Self Organizing Maps, omeSOM).

Results and Conclusion

The results showed a strong preference by panelists for tomatoes of landraces than for commercial varieties and wild species. The predictive analysis by omeSOM showed 15 VOCs significantly associated to the typical and atypical tomato odour and taste. Moreover, omeSOM was used to predict the relationship of VOC ratios with sensory data. A total of 108 VOC ratios out of 8837 VOC ratios were predicted to be contributing to the typical and atypical tomato odour and taste. The metabolic origin of these flavor-associated VOCs and the metabolic point or target for breeding strategies were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asprelli, P. D., Occhiuto, P. N., Makuch, M. A., Lorello, I. M., Togno, L. S., García, S. C., et al. (2011). Recolección de germoplasma criollo de especies cultivadas y su distribución en regiones andinas de Argentina. Horticultura Argentina, 30(71), 30–45.

    Google Scholar 

  • Asprelli, P. D., Sance, M., Insani, E. M., Asis, R., Valle, E. M., Carrari, F., et al. (2017). Agronomic performance and fruit nutritional quality of an Andean tomato collection. In XIV international symposium on processing tomato (Vol. 1159, pp. 197–204) https://doi.org/10.17660/ActaHortic.2017.1159.29.

  • Bai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Annals of Botany, 100(5), 1085–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of Food Science, 73, S294–S307.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, E. A., Scott, J. W., Einstein, M. A., Malundo, T. M. M., Carr, B. T., Shewfelt, R. L., et al. (1998). Relationship between sensory and instrumental analysis for tomato flavor. Journal of the American Society for Horticultural Science, 123(5), 906–915.

    CAS  Google Scholar 

  • Bauchet, G., Grenier, S., Samson, N., Segura, V., Kende, A., Beekwilder, J., et al. (2017). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit and implications for flavor improvement. New Phytologist, 215(2), 624–641.

    Article  PubMed  CAS  Google Scholar 

  • Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32(1), 170–189.

    Article  PubMed  CAS  Google Scholar 

  • Buttery, R. G., & Ling, L. C. (1993). Volatile components of tomato fruit and plant parts: Relationship and biogenesis. In R. Teranishi, R. G. Buttery & H. Sugisawa (Eds.), Bioactive volatile compounds from plants (pp. 22–33). ACS: Washington, D.C.

    Google Scholar 

  • Cortina, P. R., Asis, R., Peralta, I. E., Asprelli, P. D., & Santiago, A. N. (2017). Determination of volatile organic compounds in Andean tomato landraces by headspace solid phase microextraction-gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 28(1), 30–41.

    CAS  Google Scholar 

  • Di Rienzo, J. A., Guzmán, A. W., & Casanoves, F. (2002). A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics, 7(2), 129–142.

    Article  Google Scholar 

  • Dorais, M., Ehret, D., & Papadopoulos, A. (2008). Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews, 7(2), 231–250.

    Article  CAS  Google Scholar 

  • Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Wiley: Chichester.

    Book  Google Scholar 

  • Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311, 815–819.

    Article  PubMed  CAS  Google Scholar 

  • Goulet, C., Kamiyoshihara, Y., Lam, N. B., Richard, T., Taylor, M. G., Tieman, D. M., et al. (2015). Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyl transferase impacts fruit volatile ester composition. Molecular Plant, 8(1), 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Goulet, C., Mageroy, M. H., Lam, N. B., Floystad, A., Tieman, D. M., et al. (2012). Role of an esterase in flavor volatile variation within the tomato clade. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 19009–19014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hübschmann, H. J. (2009). Handbook of GC/MS: Fundamentals and applications. Weinheim: Wiley.

    Google Scholar 

  • Klee, H. J. (2010). Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44–56.

    Article  PubMed  CAS  Google Scholar 

  • Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Koeduka, T., Fridman, E., Gang, D. R., Vassão, D. G., Jackson, B. L., Kish, C. M., et al. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10128–10133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., et al. (2005). Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142–3148.

    Article  PubMed  CAS  Google Scholar 

  • Milone, D. H., Stegmayer, G., Kamenetzky, L., López, M., & Carrari, F. (2013). Clustering biological data with SOMs: On topology preservation in non-linear dimensional reduction. Expert Systems with Applications, 40(9), 3841–3845.

    Article  Google Scholar 

  • Milone, D. H., Stegmayer, G. S., Kamenetzky, L., Lopez, M., Lee, J. M., Giovannoni, J. J., et al. (2010). *omeSOM: A software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants. BMC Bioinformatics, 11, 438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Occhiuto, P. N., Peralta, I. E., Asprelli, P. D., & Galmarini, C. R. (2014). Characterization of capsicum germplasm collected in northwestern argentina based on morphological and quality traits. AgriScientia, 31(2), 63–73.

    Google Scholar 

  • Peralta, I. E., Makuch, M., García Lampasona, S., Occhiuto, P. N., Asprelli, P. D., Lorello, I. M., & Togno, L. (2008). Catalogo de Poblaciones Criollas de Pimiento, Tomate y Zapallo colectadas en Valles Andinos de la Argentina (pp. 52–99). Mendoza: Instituto Nacional de Tecnología Agropecuaria.

    Google Scholar 

  • Peralta, I. E., & Spooner, D. M. (2007). History, origin and early cultivation of tomato (Solanaceae). In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of Solanaceous crops, Vol. 2: Tomato (pp. 1–27). Enfield: Science Publishers.

    Google Scholar 

  • Petro-Turza, M. (1986). Flavor of tomato and tomato products. Food Reviews International, 2(3), 309–351.

    Article  Google Scholar 

  • Piombino, P., Sinesio, F., Moneta, E., Cammareri, M., Genovese, A., Lisanti, M. T., et al. (2013). Investigating physicochemical, volatile and sensory parameters playing a positive or a negative role on tomato liking. Food Research International, 50(1), 409–419.

    Article  CAS  Google Scholar 

  • Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613–4623.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., Rastogi, S., & Dwivedi, U. N. (2010). Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety, 9(4), 398–416.

    Article  CAS  Google Scholar 

  • Stegmayer, G., Milone, D. H., Kamenetzky, L., Lopez, M., & Carrari, F. (2009). Neural network model for integration and visualization of introgressed genome and metabolite data. In IEEE international joint conference on neural networks (pp. 2983–2989) Atlanta: IEEE.

    Google Scholar 

  • Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., et al. (2002). Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005–2009.

    Article  PubMed  CAS  Google Scholar 

  • Tandon, K. S., Baldwin, E. A., Scott, J. W., & Shewfelt, R. L. (2003). Linking sensory descriptors to volatile and nonvolatile components of fresh tomato flavor. Journal of Food Science, 68(7), 2366–2371.

    Article  CAS  Google Scholar 

  • Tandon, K. S., Baldwin, E. A., & Shewfelt, R. L. (2000). Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersiconesculentum, Mill.) as affected by the medium of evaluation. Postharvest Biology and Technology, 20, 261–268.

    Article  CAS  Google Scholar 

  • Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277(5329), 1063–1066.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8287–8292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., et al. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, D. M., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., et al. (2012). The chemical interactions underlying tomato flavor preferences. Current Biology, 22, 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660–2669.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, D. M., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355, 6323–6391.

    Article  CAS  Google Scholar 

  • Tikunov, Y., Lommen, A., De Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., et al. (2005). A novel approach for non targeted data analysis for metabolomics large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T., & Fukusaki, E. (2011). GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC Bioinformatics, 12, 131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Meulebroek, L., Bussche, J., De Clercq, N., Steppe, K., & Vanhaecke, L. (2015). A metabolomics approach to unravel the regulating role of phytohormones towards carotenoid metabolism in tomato fruit. Metabolomics, 11(3), 667–683.

    Article  CAS  Google Scholar 

  • Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233–2240.

    Article  PubMed  CAS  Google Scholar 

  • Zanor, M. I., Rambla, J., Chaïb, J., Steppa, A., Medina, A., Granell, A., et al. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139–2154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the sensory panel (Facultad de Agronomia, Universidad Nacional de Cuyo) and Georgina Stegmayer and Diego Milone for technical assistance in omeSOM analysis.

Funding

This study was funded in part by ANPCyT (PICT 2007-1942), CONICET, SECYT-UNC, INTA and the European Union Horizon 2020 Research and Innovation Programme, Grant Agreement Number 679796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Asis.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The sensory study was approved by the committee of the food science department of the National University of Cuyo. This committee established ethical criteria and protocols for sensorial panels to evaluate fresh and processing products based on the legislation provided by the National Administration of Medicine, Food and Medical Technology of Argentina (ANMAT) and National Food Code.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2018_1355_MOESM1_ESM.tif

Fig. S1. Map 30×30 of VOC ratios and sensory data. Grey and dark grey squares represent neurons with metabolites and sensory variables, respectively. Black square represent neurons with both variables. Sizes square represent the amount of variables inside the neurons. (TIF 1974 KB)

Supplementary material 2 (XLSX 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortina, P.R., Santiago, A.N., Sance, M.M. et al. Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits. Metabolomics 14, 57 (2018). https://doi.org/10.1007/s11306-018-1355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1355-7

Keywords

Navigation