Metabolomics

, 14:57 | Cite as

Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits

  • Pablo R. Cortina
  • Ana N. Santiago
  • María M. Sance
  • Iris E. Peralta
  • Fernando Carrari
  • Ramón Asis
Original Article
Part of the following topical collections:
  1. Feeding a healthier world: metabolomics for food and nutrition

Abstract

Introduction

The process of tomato (Solanum lycopersicum) breeding has affected negatively the fruit organoleptic properties and this is evident when comparing modern cultivars with heirloom varieties. Flavor of tomato fruit is determined by a complex combination of volatile and nonvolatile metabolites that is not yet understood.

Objectives

The aim of this work was to provide an alternative approach to exploring the relationship between tomato odour/taste and volatile organic compounds (VOCs).

Methods

VOC composition and organoleptic properties of seven Andean tomato landraces along with an edible wild species (Solanum pimpinellifolium) and four commercial varieties were characterized. Six hedonic traits were analyzed by a semitrained sensory panel to describe the organoleptic properties. Ninety-four VOCs were analyzed by headspace solid phase microextraction/gas chromatography–mass spectrometry (HS/SPME/GC–MS). The relationship between sensory data and VOCs was explored using an Artificial Neural Networks model (Kohonen Self Organizing Maps, omeSOM).

Results and Conclusion

The results showed a strong preference by panelists for tomatoes of landraces than for commercial varieties and wild species. The predictive analysis by omeSOM showed 15 VOCs significantly associated to the typical and atypical tomato odour and taste. Moreover, omeSOM was used to predict the relationship of VOC ratios with sensory data. A total of 108 VOC ratios out of 8837 VOC ratios were predicted to be contributing to the typical and atypical tomato odour and taste. The metabolic origin of these flavor-associated VOCs and the metabolic point or target for breeding strategies were discussed.

Keywords

VOC Tomato flavor Artificial neural network GC–MS SPME 

Notes

Acknowledgements

The authors would like to acknowledge the sensory panel (Facultad de Agronomia, Universidad Nacional de Cuyo) and Georgina Stegmayer and Diego Milone for technical assistance in omeSOM analysis.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The sensory study was approved by the committee of the food science department of the National University of Cuyo. This committee established ethical criteria and protocols for sensorial panels to evaluate fresh and processing products based on the legislation provided by the National Administration of Medicine, Food and Medical Technology of Argentina (ANMAT) and National Food Code.

Supplementary material

11306_2018_1355_MOESM1_ESM.tif (1.9 mb)
Fig. S1. Map 30×30 of VOC ratios and sensory data. Grey and dark grey squares represent neurons with metabolites and sensory variables, respectively. Black square represent neurons with both variables. Sizes square represent the amount of variables inside the neurons. (TIF 1974 KB)
11306_2018_1355_MOESM2_ESM.xlsx (101 kb)
Supplementary material 2 (XLSX 100 KB)

References

  1. Asprelli, P. D., Occhiuto, P. N., Makuch, M. A., Lorello, I. M., Togno, L. S., García, S. C., et al. (2011). Recolección de germoplasma criollo de especies cultivadas y su distribución en regiones andinas de Argentina. Horticultura Argentina, 30(71), 30–45.Google Scholar
  2. Asprelli, P. D., Sance, M., Insani, E. M., Asis, R., Valle, E. M., Carrari, F., et al. (2017). Agronomic performance and fruit nutritional quality of an Andean tomato collection. In XIV international symposium on processing tomato (Vol. 1159, pp. 197–204)  https://doi.org/10.17660/ActaHortic.2017.1159.29.
  3. Bai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Annals of Botany, 100(5), 1085–1094.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of Food Science, 73, S294–S307.CrossRefPubMedGoogle Scholar
  5. Baldwin, E. A., Scott, J. W., Einstein, M. A., Malundo, T. M. M., Carr, B. T., Shewfelt, R. L., et al. (1998). Relationship between sensory and instrumental analysis for tomato flavor. Journal of the American Society for Horticultural Science, 123(5), 906–915.Google Scholar
  6. Bauchet, G., Grenier, S., Samson, N., Segura, V., Kende, A., Beekwilder, J., et al. (2017). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit and implications for flavor improvement. New Phytologist, 215(2), 624–641.CrossRefPubMedGoogle Scholar
  7. Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32(1), 170–189.CrossRefPubMedGoogle Scholar
  8. Buttery, R. G., & Ling, L. C. (1993). Volatile components of tomato fruit and plant parts: Relationship and biogenesis. In R. Teranishi, R. G. Buttery & H. Sugisawa (Eds.), Bioactive volatile compounds from plants (pp. 22–33). ACS: Washington, D.C.Google Scholar
  9. Cortina, P. R., Asis, R., Peralta, I. E., Asprelli, P. D., & Santiago, A. N. (2017). Determination of volatile organic compounds in Andean tomato landraces by headspace solid phase microextraction-gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 28(1), 30–41.Google Scholar
  10. Di Rienzo, J. A., Guzmán, A. W., & Casanoves, F. (2002). A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics, 7(2), 129–142.CrossRefGoogle Scholar
  11. Dorais, M., Ehret, D., & Papadopoulos, A. (2008). Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews, 7(2), 231–250.CrossRefGoogle Scholar
  12. Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Wiley: Chichester.CrossRefGoogle Scholar
  13. Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311, 815–819.CrossRefPubMedGoogle Scholar
  14. Goulet, C., Kamiyoshihara, Y., Lam, N. B., Richard, T., Taylor, M. G., Tieman, D. M., et al. (2015). Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyl transferase impacts fruit volatile ester composition. Molecular Plant, 8(1), 153–162.CrossRefPubMedGoogle Scholar
  15. Goulet, C., Mageroy, M. H., Lam, N. B., Floystad, A., Tieman, D. M., et al. (2012). Role of an esterase in flavor volatile variation within the tomato clade. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 19009–19014.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hübschmann, H. J. (2009). Handbook of GC/MS: Fundamentals and applications. Weinheim: Wiley.Google Scholar
  17. Klee, H. J. (2010). Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44–56.CrossRefPubMedGoogle Scholar
  18. Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257–262.CrossRefPubMedGoogle Scholar
  19. Koeduka, T., Fridman, E., Gang, D. R., Vassão, D. G., Jackson, B. L., Kish, C. M., et al. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10128–10133.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., et al. (2005). Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142–3148.CrossRefPubMedGoogle Scholar
  21. Milone, D. H., Stegmayer, G., Kamenetzky, L., López, M., & Carrari, F. (2013). Clustering biological data with SOMs: On topology preservation in non-linear dimensional reduction. Expert Systems with Applications, 40(9), 3841–3845.CrossRefGoogle Scholar
  22. Milone, D. H., Stegmayer, G. S., Kamenetzky, L., Lopez, M., Lee, J. M., Giovannoni, J. J., et al. (2010). *omeSOM: A software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants. BMC Bioinformatics, 11, 438.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Occhiuto, P. N., Peralta, I. E., Asprelli, P. D., & Galmarini, C. R. (2014). Characterization of capsicum germplasm collected in northwestern argentina based on morphological and quality traits. AgriScientia, 31(2), 63–73.Google Scholar
  24. Peralta, I. E., Makuch, M., García Lampasona, S., Occhiuto, P. N., Asprelli, P. D., Lorello, I. M., & Togno, L. (2008). Catalogo de Poblaciones Criollas de Pimiento, Tomate y Zapallo colectadas en Valles Andinos de la Argentina (pp. 52–99). Mendoza: Instituto Nacional de Tecnología Agropecuaria.Google Scholar
  25. Peralta, I. E., & Spooner, D. M. (2007). History, origin and early cultivation of tomato (Solanaceae). In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of Solanaceous crops, Vol. 2: Tomato (pp. 1–27). Enfield: Science Publishers.Google Scholar
  26. Petro-Turza, M. (1986). Flavor of tomato and tomato products. Food Reviews International, 2(3), 309–351.CrossRefGoogle Scholar
  27. Piombino, P., Sinesio, F., Moneta, E., Cammareri, M., Genovese, A., Lisanti, M. T., et al. (2013). Investigating physicochemical, volatile and sensory parameters playing a positive or a negative role on tomato liking. Food Research International, 50(1), 409–419.CrossRefGoogle Scholar
  28. Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613–4623.CrossRefPubMedGoogle Scholar
  29. Singh, R., Rastogi, S., & Dwivedi, U. N. (2010). Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety, 9(4), 398–416.CrossRefGoogle Scholar
  30. Stegmayer, G., Milone, D. H., Kamenetzky, L., Lopez, M., & Carrari, F. (2009). Neural network model for integration and visualization of introgressed genome and metabolite data. In IEEE international joint conference on neural networks (pp. 2983–2989) Atlanta: IEEE.Google Scholar
  31. Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., et al. (2002). Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005–2009.CrossRefPubMedGoogle Scholar
  32. Tandon, K. S., Baldwin, E. A., Scott, J. W., & Shewfelt, R. L. (2003). Linking sensory descriptors to volatile and nonvolatile components of fresh tomato flavor. Journal of Food Science, 68(7), 2366–2371.CrossRefGoogle Scholar
  33. Tandon, K. S., Baldwin, E. A., & Shewfelt, R. L. (2000). Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersiconesculentum, Mill.) as affected by the medium of evaluation. Postharvest Biology and Technology, 20, 261–268.CrossRefGoogle Scholar
  34. Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277(5329), 1063–1066.CrossRefPubMedGoogle Scholar
  35. Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8287–8292.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., et al. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113–123.CrossRefPubMedGoogle Scholar
  37. Tieman, D. M., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., et al. (2012). The chemical interactions underlying tomato flavor preferences. Current Biology, 22, 1035–1039.CrossRefPubMedGoogle Scholar
  38. Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660–2669.CrossRefPubMedGoogle Scholar
  39. Tieman, D. M., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355, 6323–6391.CrossRefGoogle Scholar
  40. Tikunov, Y., Lommen, A., De Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., et al. (2005). A novel approach for non targeted data analysis for metabolomics large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T., & Fukusaki, E. (2011). GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC Bioinformatics, 12, 131.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Van Meulebroek, L., Bussche, J., De Clercq, N., Steppe, K., & Vanhaecke, L. (2015). A metabolomics approach to unravel the regulating role of phytohormones towards carotenoid metabolism in tomato fruit. Metabolomics, 11(3), 667–683.CrossRefGoogle Scholar
  43. Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233–2240.CrossRefPubMedGoogle Scholar
  44. Zanor, M. I., Rambla, J., Chaïb, J., Steppa, A., Medina, A., Granell, A., et al. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139–2154.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFIQC, Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina
  2. 2.IADIZA, CCT-CONICET Mendoza, Parque General San MartínMendozaArgentina
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional deCuyo y CCT CONICET MendozaMendozaArgentina
  4. 4.Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CastelarArgentina
  5. 5.Departamento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  6. 6.CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations