Skip to main content
Log in

A systematic review of metabolomics biomarkers for Bisphenol A exposure

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, a common industrial chemical which has extremely huge production worldwide, is ubiquitous in the environment. Human have high risk of exposing to BPA and the health problems caused by BPA exposure have aroused public concern. However, the biomarkers for BPA exposure are lacking. As a rapidly developing subject, metabolomics has accumulated a large amount of valuable data in various fields. The secondary application of published metabolomics data could be a very promising field for generating novel biomarkers whilst further understanding of toxicity mechanisms.

Objectives

To summarize the published literature on the use of metabolomics as a tool to study BPA exposure and provide a systematic perspectives of current research on biomarkers screening of BPA exposure.

Methods

We conducted a systematic search of MEDLINE (PubMed) up to the end of June 25, 2017 with the key term combinations of ‘metabolomics’, ‘metabonomics’, ‘mass spectrometry’, ‘nuclear magnetic spectroscopy’, ‘metabolic profiling’ and ‘amino acid profile’ combined with ‘BPA exposure’. Additional articles were identified through searching the reference lists from included studies.

Results

This systematic review included 15 articles. Intermediates of glycolysis, Krebs cycle, β oxidation of long chain fatty acids, pentose phosphate pathway, nucleoside metabolism, branched chain amino acid metabolism, aromatic amino acids metabolism, sulfur-containing amino acids metabolism were significantly changed after BPA exposure, suggesting BPA had a highly complex toxic effects on organism which was consistent with existing studies. The biomarkers most consistently associated with BPA exposure were lactate and choline.

Conclusion

Existing metabolomics studies of BPA exposure present heterogeneous findings regarding metabolite profile characteristics. We need more evidence from target metabolomics and epidemiological studies to further examine the reliability of these biomarkers which link to low, environmentally relevant, exposure of BPA in human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Acevedo, N., Davis, B., Schaeberle, C. M., Sonnenschein, C., & Soto, A. M. (2013). Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environmental Health Perspectives, 121(9), 1040–1046.

    PubMed  PubMed Central  Google Scholar 

  • Alonso-Magdalena, P., Quesada, I., & Nadal, Á (2015). Prenatal exposure to BPA and offspring outcomes: The diabesogenic behavior of BPA. Dose Response, 13(2), 1559325815590395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ankley, G. T., & Villeneuve, D. L. (2006). The fathead minnow in aquatic toxicology: Past, present and future. Aquatic Toxicology, 78(1), 91–102.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, S. M., Roy, A., Emo, J., Chapman, T. J., Georas, S. N., & Lawrence, B. P. (2012). The effects of maternal exposure to bisphenol A on allergic lung inflammation into adulthood. Toxicological Sciences, 130(1), 82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, J. M., Muckle, G., Arbuckle, T., Bouchard, M. F., Fraser, W. D., Ouellet, E., et al. (2017). Associations of prenatal urinary bisphenol A concentrations with child behaviors and cognitive abilities. Environmental Health Perspectives, 125(6), 067008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breen, A. P., & Murphy, J. A. (1995). Reactions of oxyl radicals with DNA. Free Radical Biology and Medicine, 18(6), 1033–1077.

    Article  CAS  PubMed  Google Scholar 

  • Cabaton, N. J., Canlet, C., Wadia, P. R., Tremblay-Franco, M., Gautier, R., Molina, J., et al. (2013). Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environmental Health Perspectives, 121(5), 586–593.

    PubMed  PubMed Central  Google Scholar 

  • Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environmental Health Perspectives, 116(1), 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Xu, B., Ji, W., Qiao, S., Hu, N., Hu, Y., et al. (2012). Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: A LC-QTOF-based metabolomics study. PLoS ONE, 7(9), e44754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Zhou, K., Chen, X., Qiao, S., Hu, Y., Xu, B., et al. (2014). Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats. Toxicological Sciences, 138(2), 256–267.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S., Rhee, E. P., Larson, M. G., Lewis, G. D., McCabe, E. L., Shen, D., et al. (2012). Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation, 125(18), 2222–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, S. H., Choi, M. H., Kwon, O. S., Lee, W. Y., & Chung, B. C. (2009). Metabolic significance of bisphenol A-induced oxidative stress in rat urine measured by liquid chromatography-mass spectrometry. Journal of Applied Toxicology, 29(2), 110–117.

    Article  CAS  PubMed  Google Scholar 

  • Collette, T. W., Skelton, D. M., Davis, J. M., Cavallin, J. E., Jensen, K. M., Kahl, M. D., et al. (2016). Metabolite profiles of repeatedly sampled urine from male fathead minnows (Pimephales promelas) contain unique lipid signatures following exposure to anti-androgens. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 19, 190–198.

    CAS  Google Scholar 

  • Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., & Brooks, B. W. (2015). Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose Response, 13(3), 1559325815598308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dizdaroglu, M. (1992). Oxidative damage to DNA in mammalian chromatin. Mutation Research, 275(3–6), 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Ekman, D. R., Hartig, P. C., Cardon, M., Skelton, D. M., Teng, Q., Durhan, E. J., et al. (2012). Metabolite profiling and a transcriptional activation assay provide direct evidence of androgen receptor antagonism by bisphenol A in fish. Environmental Science & Technology, 46(17), 9673–9680.

    Article  CAS  Google Scholar 

  • Ekman, D. R., Skelton, D. M., Davis, J. M., Villeneuve, D. L., Cavallin, J. E., Schroeder, A., et al. (2015). Metabolite profiling of fish skin mucus: A novel approach for minimally-invasive environmental exposure monitoring and surveillance. Environmental Science & Technology, 49(5), 3091–3100.

    Article  CAS  Google Scholar 

  • Fic, A., Žegura, B., Dolenc, M. S., Filipič, M., & Peterlin, M. L. (2013). Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. Archives of Industrial Hygiene and Toxicology, 64(2), 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, N. (2012). Metabolomics in diabetes research. Journal of Endocrinology, 215(1), 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Hoepner, L. A., Whyatt, R. M., Widen, E. M., Hassoun, A., Oberfield, S. E., Mueller, N. T., et al. (2016). Bisphenol A and adiposity in an inner-city birth cohort. Environmental Health Perspectives, 124(10), 1644–1650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, W., Dong, T., Wang, L., Guan, Q., Song, L., Chen, D., et al. (2017). Obesity aggravates toxic effect of BPA on spermatogenesis. Environment International, 105, 56–65.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Jiang, C., Luo, J., Cui, Y., Qin, L., & Liu, J. (2014). Maternal exposure to bisphenol A may increase the risks of Parkinson’s disease through down-regulation of fetal IGF-1 expression. Medical Hypotheses, 82(3), 245–249.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, J., Xiong, G., & Bentleylewis, R. (2014). A systematic review of metabolite profiling in gestational diabetes mellitus. Diabetologia, 57(12), 2453–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, C., Wei, L., Zhao, J., & Wu, H. (2014). Metabolomic analysis revealed that female mussel Mytilus galloprovincialis was sensitive to bisphenol A exposures. Environmental Toxicology and Pharmacology, 37(2), 844–849.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, J., Zare, A., Jackson, L. J., Habibi, H. R., & Weljie, A. M. (2012). Environmental contaminant mixtures at ambient concentrations invoke a metabolic stress response in goldfish not predicted from exposure to individual compounds alone. Journal of Proteome Research, 11(2), 1133–1143.

    Article  CAS  PubMed  Google Scholar 

  • Lassen, T. H., Frederiksen, H., Jensen, T. K., Petersen, J. H., Joensen, U. N., Main, K. M., et al. (2014). Urinary bisphenol A levels in young men: Association with reproductive hormones and semen quality. Environmental Health Perspectives, 122(5), 478–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D. K., Zhou, Z., Miao, M., He, Y., Wang, J., Ferber, J., et al. (2011). Urine bisphenol-A (BPA) level in relation to semen quality. Fertility and Sterility, 95(2):625–630.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Jin, Y., Wang, J., Tang, Z., Xu, S., Wang, T., & Cai, Z. (2016). Urinary profiling of cis-diol-containing metabolites in rats with bisphenol A exposure by liquid chromatography-mass spectrometry and isotope labeling. Analyst, 141(3), 1144–1153.

    Article  CAS  PubMed  Google Scholar 

  • Lotta, L. A., Scott, R. A., Sharp, S. J., Burgess, S., Luan, J., Tillin, T., et al. (2016). Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: A mendelian randomisation analysis. PLoS Medicine, 13(11), e1002179.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormack, S. E., Shaham, O., McCarthy, M. A., Deik, A. A., Wang, T. J., Gerszten, R. E., et al. (2013). Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity, 8(1), 52–61.

    Article  CAS  PubMed  Google Scholar 

  • Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K., & Michałowicz, J. (2017). Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology, 100, 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortmayr, K., Schwaiger, M., Hann, S., & Koellensperger, G. (2015). An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry. Analyst, 140(22), 7687–7695.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, D., Chung, Y. M., & Hu, M. C. (2015). Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: The role of c-Myc. Environmental Health Perspectives, 123(12), 1271–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potratz, S., Tarnow, P., Jungnickel, H., Baumann, S., von Bergen, M., Tralau, T., & Luch, A. (2017). Combination of metabolomics with cellular assays reveals new biomarkers and mechanistic insights on xenoestrogenic exposures in MCF-7 cells. Chemical Research in Toxicology, 30(4), 883–892.

    Article  CAS  PubMed  Google Scholar 

  • Poulsen, H. E., Prieme, H., & Loft, S. (1998). Role of oxidative DNA damage in cancer initiation and promotion. European Journal of Cancer Prevention, 7(1), 9–16.

    CAS  PubMed  Google Scholar 

  • Prins, G. S., Ye, S. H., Birch, L., Zhang, X., Cheong, A., Lin, H., et al. (2017). Prostate cancer risk and DNA methylation signatures in aging rats following developmental BPA exposure: A dose-response analysis. Environmental Health Perspectives, 125(7), 077007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman, M. S., Kwon, W. S., Karmakar, P. C., Yoon, S. J., Ryu, B. Y., & Pang, M. G. (2017). Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environmental Health Perspectives, 125(2), 238–245.

    PubMed  Google Scholar 

  • Roberts, L. D., Koulman, A., & Griffin, J. L. (2014). Towards metabolic biomarkers of insulin resistance and type 2 diabetes: Progress from the metabolome. The Lancet Diabetes & Endocrinology, 2(1), 65–75.

    Article  CAS  Google Scholar 

  • Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. Reproductive Toxicology, 42, 132–155.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld, C. S., Sieli, P. T., Warzak, D. A., Ellersieck, M. R., Pennington, K. A., & Roberts, R. M. (2013). Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice. Proceedings of the National Academy of Sciences, 110(2), 537–542.

    Article  CAS  Google Scholar 

  • Snijder, C. A., Heederik, D., Pierik, F. H., Hofman, A., Jaddoe, V. W., Koch, H. M., et al. (2013). Fetal growth and prenatal exposure to bisphenol A: The generation R study. Environmental Health Perspectives, 121(3), 393–398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto, A. M., Brisken, C., Schaeberle, C., & Sonnenschein, C. (2013). Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. Journal of Mammary Gland Biology and Neoplasia, 18(2), 199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, H., & Wang, Y. (2016). Branched chain amino acid metabolic reprogramming in heart failure. Biochimica et Biophysica Acta, 1862(12), 2270–2275.

    Article  CAS  PubMed  Google Scholar 

  • Susiarjo, M., Xin, F., Stefaniak, M., Mesaros, C., Simmons, R. A., & Bartolomei, M. S. (2017). Bile acids and tryptophan metabolism are novel pathways involved in metabolic abnormalities in BPA-exposed pregnant mice and male offspring. Endocrinology, 158(8), 2533–2542.

    Article  PubMed  Google Scholar 

  • Van Winkle, L. S., Murphy, S. R., Boetticher, M. V., & VandeVoort, C. A. (2013). Fetal exposure of rhesus macaques to bisphenol a alters cellular development of the conducting airway by changing epithelial secretory product expression. Environmental Health Perspectives, 121(8), 912–918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinhouse, C., Anderson, O. S., Bergin, I. L., Vandenbergh, D. J., Gyekis, J. P., Dingman, M. A., et al. (2014). Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environmental Health Perspectives, 122(5), 485–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, C., Yoon, D., Cho, J., Kim, S., Lee, H., Choi, H., & Kim, S. (2017). 1H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio). Journal of Environmental Science and Health, Part B, 52(4), 282–289.

    Article  CAS  Google Scholar 

  • Zeng, J., Kuang, H., Hu, C., Shi, X., Yan, M., Xu, L., et al. (2013). Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. Environmental Science & Technology, 47(13), 7457–7465.

    Article  CAS  Google Scholar 

  • Zhang, T., Sun, H., & Kannan, K. (2013). Blood and urinary bisphenol A concentrations in children, adults, and pregnant women from china: Partitioning between blood and urine and maternal and fetal cord blood. Environmental Science & Technology, 47(9), 4686–4694.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Applied Basic Research Program of Wuhan Science and Technology Bureau (2016010101010003); and the independent innovation research fund, HUST (2017KFYXJJ069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songfeng Lu or Shunqing Xu.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This review was conducted in accordance with ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Rang, O., Liu, F. et al. A systematic review of metabolomics biomarkers for Bisphenol A exposure. Metabolomics 14, 45 (2018). https://doi.org/10.1007/s11306-018-1342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1342-z

Keywords

Navigation