Metabolomics

, 14:33 | Cite as

Effects of α-zearalenol on the metabolome of two breast cancer cell lines by 1H-NMR approach

  • Anna Chiara Nittoli
  • Susan Costantini
  • Angela Sorice
  • Francesca Capone
  • Roberto Ciarcia
  • Stefania Marzocco
  • Alfredo Budillon
  • Lorella Severino
Original Article
  • 24 Downloads

Abstract

Introduction

Zearalenone (ZEN) is one of the most widely distributed toxins that contaminates many crops and foods. Its major metabolites are α-Zearalenol (α-zol) and β-Zearalenol. Previous studies showed that ZEN and α-zol have estrogenic properties and are able to induce growth promoting effect in breast tissues.

Objectivies

Considering that tumorigenesis is dependent on the reprogramming of cellular metabolism and that the evaluation of the cellular metabolome is useful to understand the metabolic changes that can occur during the cancer development and progression or after treatments, aim of our work is to study, for the first time, the effects of α-zol on the metabolomic profile of an estrogen positive breast cancer cell line, MCF-7, and of an estrogen negative breast cancer cell lines MDA-MB231.

Methods

Firstly, we tested the effects of α-zol on the cell viability after 24, 48 and 72 h of treatments with 10−10, 10−8 and 10−6 M concentrations on breast cancer MCF-7 and MDA-MB231 cell lines in comparison to human non-cancerous breast MCF10A cell line. Then, we evaluated cell cycle progression, levels of reactive oxygen species (ROS) and the metabolomic profiling by 1H-NMR approach on MCF-7 and MDA-MB231 before and after 72 h treatments. Principal component analysis was used to compare the obtained spectra.

Results

α-zol is resulted able to induce: (i) an increase of the cell viability on MCF-7 cells mainly after 72 h treatment, (ii) a slight decrease of the cell viability on MDA-MB231 cells, and (iii) an increase of cells in S phase of the cell cycle and of ROS only in MCF-7 cells. Moreover, the evaluation of metabolomics profile evidenced that after treatment with α-zol the levels of some metabolites increased in MCF-7 cells whereas decreased slightly in MDA-MB231 cells.

Conclusions

Our results showed that α-zol was able to increase the protein biosynthesis as well as the lipid metabolism in MCF-7 cells, and, hence, to induce an estrogen positive breast cancer progression.

Keywords

Metabolome Alpha-zol Breast cancer NMR 

Notes

Compliance with ethical standards

Conflict of interest

Anna Chiara Nittoli, Susan Costantini, Angela Sorice, Francesca Capone, Roberto Ciarcia, Stefania Marzocco, Alfredo Budillon and Lorella Severino declare no conflict of interest.

Ethical approval

Anna Chiara Nittoli, Susan Costantini, Angela Sorice, Francesca Capone, Roberto Ciarcia, Stefania Marzocco, Alfredo Budillon and Lorella Severino have no ethical requirements to declare.

References

  1. Ayed, Y., Ayed-Boussema, I., Ouanes, Z., & Bacha, H. (2011). In vitro and in vivo induction of chromosome aberrations by alpha-and beta-zearalenols: Comparison with zearalenone. Mutagenesis, 726, 42–46.Google Scholar
  2. Caso, G., McNurlan, M. A., McMillan, N. D., Eremin, O., & Garlick, P. J. (2004). Tumour cell growth in culture: Dependence on arginine. Clinical Science, 107, 371–379.CrossRefPubMedGoogle Scholar
  3. Costantini, S., Guerriero, E., Teta, R., Capone, F., Caso, A., Sorice, A., et al. (2017). Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. International Journal of Molecular Sciences, 18(10), E2112.CrossRefPubMedGoogle Scholar
  4. Eliyahu, G., Kreizman, T., & Degani, H. (2007). Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. International Journal of Cancer, 120, 1721–1730.CrossRefPubMedGoogle Scholar
  5. Giraudeau, P., Silvestre, V., & Akoka, S. (2015). Optimizing water suppression for quantitative NMR based metabolomics: A tutorial view. Metabolomics, 11, 1041–1055.CrossRefGoogle Scholar
  6. Glunde, K., Bhujwalla, Z. M., & Ronen, S. M. (2011). Choline metabolism in malignant transformation. Nature Review Cancer, 11, 835–848.CrossRefGoogle Scholar
  7. Glunde, K., Jie, C., & Bhujwalla, Z. M. (2004). Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Research, 64, 4270–4276.CrossRefPubMedGoogle Scholar
  8. Jia, M., Andreassen, T., Jensen, L., Bathen, T. F., Sinha, I., Gao, H., et al. (2016). Estrogen receptor α promotes breast cancer by reprogramming choline metabolism. Cancer Research, 76, 5634–5646.CrossRefPubMedGoogle Scholar
  9. Khosrokhavar, R., Rahimifard, N., Shoeibi, S., Hamedani, M. P., & Hosseini, M. J. (2009). Effects of zearalenone and α-zearalenol incomparison with raloxifene on T47D cells. Toxicology Mechanisms and Methods, 19, 246–250.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Li, J. J., & Li, S. A. (1998). Natural and anthropogenic environmental oestrogens: The scientific basis for risk assessment. Breast cancer: Evidence for xeno-estrogen involvement in altering its incidence and risk. Pure and Applied Chemistry, 70, 1713–1723.Google Scholar
  11. Lin, J., Lee, I. M., Song, Y., Cook, N. R., Selhub, J., Manson, J. E., Buring, J. E., & Zhang, S. M. (2010). Plasma homocysteine and cysteine and risk of breast cancer in women. Cancer Research, 70, 2397–2405.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liu, W., Hancock, C. N., Fischer, J. W., Harman, M., & Phang, J. M. (2015). Proline biosynthesis augments tumor cell growth and aerobic glycolysis: Involvement of pyridine nucleotides. Scientific Report, 5, 17206.CrossRefGoogle Scholar
  13. Lu, J., Yu, J. Y., Lim, S. S., Son, Y. O., Kim, D. H., Lee, S. A., Shi, X., & Lee, J. C. (2013). Cellular mechanism of the cytotoxic effects of the zearalenone metabolites α-zearalenol and β-zearalenol on RAW264.7 macrophages. Toxicology in Vitro, 27, 1007–1017.CrossRefPubMedGoogle Scholar
  14. Parandin, R., Behnam Rassouli, M., Sisakhtnezhad, S., & Mahdavi Shahri, N. (2015). In vitro evaluation of the effects of zearalenone and α-zearalenol on MCF-7 and MDA-MB-468 cell lines of human breast cancer. Razavi International Journal of Medicine, 3, e30231.CrossRefGoogle Scholar
  15. Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23, 27–47.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Richardson, A. D., Yang, C., Osterman, A., & Smith, J. W. (2008). Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Research and Treatment, 110, 297–307.CrossRefPubMedGoogle Scholar
  17. Shu, J., Li, C. G., Liu, Y. C., Yan, X. C., Xu, X., Huang, X. E., et al. (2012). Comparison of serum tumor associated material (TAM) with conventional biomarkers in cancer patients. Asian Pacific Journal of Cancer Prevention, 13, 2399–2403.CrossRefPubMedGoogle Scholar
  18. Sorice, A., Siano, F., Capone, F., Guerriero, E., Picariello, G., Budillon, A., et al. (2016) Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules, 21(10), E1411.CrossRefPubMedGoogle Scholar
  19. Tatay, E., Meca, G., Font, G., & Ruiz, M. J. (2014). Cytotoxic and interactie effects of zearalenone, α-zearalenol and β-zearalenol and formation of metabolites in HepG2 cells. Critical Reviews of Toxicology, 31, 187–195.Google Scholar
  20. Tomaszewski, J., Miturski, R., Semczuk, A., Kotarski, J., & Jakowicki, J. (1998). Tissue zearalenone concentration in normal, hyperplastic and neoplastic human endometrium. Ginekologia Polska, 69, 363–366.PubMedGoogle Scholar
  21. Traverso, N., Ricciarelli, R., Nitti, M., Marengo, B., Furfaro, A. L., Pronzato, M. A., et al. (2013). Role of glutathione in cancer progression and chemoresistance. Oxidative Medicine and Cellular Longevity, 2013, 972913.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Venkataramana, M., Chandra Nayaka, S., Anand, T., Rajesh, R., Aiyaz, M., Divakara, S. T., et al. (2014). Zearalenone induced toxicity in SHSY-5Y cells: The role of oxidative stress evidenced by N-acetyl cysteine. Food and Chemical Toxicology, 65, 335–342.CrossRefPubMedGoogle Scholar
  23. Wu, Y., Dong, Y., Atefi, M., Liu, Y., Elshimali, Y., & Vadgama, J. V. (2016). Lactate, a neglected factor for diabetes and cancer interaction. Mediators of Inflammation, 2016, 6456018.PubMedPubMedCentralGoogle Scholar
  24. Xia, J., Sinelnikov, I., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43, 251–257.CrossRefGoogle Scholar
  25. Xie, G., Zhou, B., Zhao, A., Qiu, Y., Zhao, X., Garmire, L., et al. (2015). Lowered circulating aspartate is a metabolic feature of human breast cancer. Oncotarget, 6, 33369–33381.PubMedPubMedCentralGoogle Scholar
  26. Yip, K. Y., Wan, M. L. Y., Wong, A. S. T., Korach, K. S., & El-Nezami, H. (2017). Combined low-dose zearalenone and aflatoxin B1 on cell growth and cell-cycle progression in breast cancer MCF-7 cells. Toxicology Letters, 281, 139–151.CrossRefPubMedGoogle Scholar
  27. Young, S. Z., & Bordey, A. (2009). GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda), 24, 171–185.Google Scholar
  28. Yuri, T., Tsukamoto, R., Miki, K., Uehara, N., Matsuoka, Y., & Tsubura, A. (2006). Biphasic effects of zeranol on the growth of estrogen receptor-positive human breast carcinoma cells. Oncology Reports, 16, 1307–1312.PubMedGoogle Scholar
  29. Zenidine, A., Soriano, J. M., Moltò, J. C., & Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotocin. Food and Chemical Toxicology, 45, 1–18.CrossRefGoogle Scholar
  30. Zhou, J. Z., Riquelme, M. A., Gao, X., Ellies, L. G., Sun, L. Z., & Jiang, J. X. (2015). Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene, 34, 1831–1842.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anna Chiara Nittoli
    • 1
  • Susan Costantini
    • 2
  • Angela Sorice
    • 2
  • Francesca Capone
    • 2
  • Roberto Ciarcia
    • 1
  • Stefania Marzocco
    • 3
  • Alfredo Budillon
    • 2
  • Lorella Severino
    • 1
  1. 1.Unità di Farmacologia e Tossicologia - Dipatimento di Medicina Veterinaria e Produzioni AnimaliUniversità degli Studi di Napoli “Federico II”NaplesItaly
  2. 2.Unità di Farmacologia Sperimentale - Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNaplesItaly
  3. 3.Dipartimento di Farmacia, Campus di FiscianoUniversità degli Studi di SalernoSalernoItaly

Personalised recommendations