Skip to main content

Metabonomic investigation of rat tissues following intravenous administration of cyanidin 3-glucoside at a physiologically relevant dose

Abstract

Anthocyanins, which are dietary flavonoids occurring in fruit and beverages, are reported to have a beneficial impact on a wide range of chronic diseases, such as cardiovascular, neurodegenerative and neoplastic diseases. To understand the underlying mechanisms, a biochemical description of the changes in cell metabolism caused by anthocyanins can be provided by metabonomic studies. The aim of this study was to detect changes in the profiles of metabolites induced by the administration of cyanidin 3-glucoside to adult male rats. A physiological dose of cyanidin 3-glucoside was intravenously administered, and blood, kidneys and liver were collected after 5 min. The tissues were rapidly frozen in liquid nitrogen, stored briefly at −80 °C, homogenised under cryogenic conditions and extracted in ice-cold methanol:water (95:5, v/v). The extracts were then analysed using UPLC/QTOF-MS. Multivariate statistical analysis of the data was performed using orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Discriminating variables were compared to the in-house standard database, considering matches in retention times, parent mass ions, mass fragment patterns and isotopic patterns. This metabolomic approach made it possible to identify as many as eight metabolite markers, including bile acids, reduced and oxidised glutathione and some lipids. Such changes suggest that cyanidin 3-glucoside has a major effect on tissue antioxidant status as well as on energy and glucose metabolism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adhikari, D. P., Francis, J. A., Schutzki, R. E., Chandra, A., & Nair, M. G. (2005). Quantification and characterisation of cyclo-oxygenase and lipid peroxidation inhibitory anthocyanins in fruits of Amelanchier. Phytochemical Analysis, 16(3), 175–180.

    PubMed  Article  Google Scholar 

  2. Ali, K., Iqbal, M., Korthout, H., Maltese, F., Fortes, A., Pais, M., et al. (2012). NMR spectroscopy and chemometrics as a tool for anti-TNFα activity screening in crude extracts of grapes and other berries. Metabolomics. doi:10.1007/s11306-012-0406-8.

  3. Attilio, R. (2007). Absorption, transport, and tissue delivery of vitamin E. Molecular Aspects of Medicine, 28(5–6), 423–436.

    Google Scholar 

  4. Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390(3), 191–214.

    PubMed  Article  CAS  Google Scholar 

  5. Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68(3), 168–177.

    PubMed  Article  Google Scholar 

  6. Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20(8–10), 341–351.

    Article  Google Scholar 

  7. Cassidy, A., O’Reilly, É. J., Kay, C., Sampson, L., Franz, M., Forman, J. P., et al. (2011). Habitual intake of flavonoid subclasses and incident hypertension in adults. The American Journal of Clinical Nutrition, 93(2), 338–347.

    PubMed  Article  CAS  Google Scholar 

  8. Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., & Rodrick, G. E. (2009). Metabolomic analysis in food science: a review. Trends in Food Science & Technology, 20(11–12), 557–566.

    Article  CAS  Google Scholar 

  9. Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112.

    Article  CAS  Google Scholar 

  10. Coen, M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology, 21(1), 9–27.

    PubMed  Article  CAS  Google Scholar 

  11. Cole, S. P. C., & Deeley, R. G. (2006). Transport of glutathione and glutathione conjugates by MRP1. Trends in Pharmacological Sciences, 27(8), 438–446.

    PubMed  Article  CAS  Google Scholar 

  12. Dawson, P. A., Hubbert, M. L., & Rao, A. (2010). Getting the mOST from OST: Role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochimica et Biophysica Acta, 1801(9), 994–1004.

    PubMed  Article  CAS  Google Scholar 

  13. De Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.

    PubMed  Article  Google Scholar 

  14. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78.

    PubMed  Article  CAS  Google Scholar 

  15. Ennulat, D., Magid-Slav, M., Rehm, S., & Tatsuoka, K. S. (2010). Diagnostic performance of traditional hepatobiliary biomarkers of drug-induced liver injury in the rat. Toxicological Sciences, 116(2), 397–412.

    PubMed  Article  CAS  Google Scholar 

  16. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2(3), 155–168.

    PubMed  Article  CAS  Google Scholar 

  17. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1), 155–171.

    PubMed  Article  CAS  Google Scholar 

  18. Gika, H., & Theodoridis, G. (2011). Sample preparation prior to the LC-MS-based metabolomics/metabonomics of blood-derived samples. Bioanalysis, 3(14), 1647–1661.

    PubMed  Article  CAS  Google Scholar 

  19. Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., et al. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4), 1365–1402.

    PubMed  Article  CAS  Google Scholar 

  20. Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B., & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet, 342(8878), 1007–1011.

    PubMed  Article  CAS  Google Scholar 

  21. Ichiyanagi, T. (2008). Bioavailability and metabolic fate of anthocyanins. Functional food and health. ACS Symposium Series, 993, 48–61.

    Article  CAS  Google Scholar 

  22. Jackson, J. E. (1991). User’s guide to principal components. New York: Wiley.

  23. Kay, C. D. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19(01), 137–146.

    PubMed  Article  CAS  Google Scholar 

  24. Kind, T., & Fiehn, O. (2009). What are the obstacles for an integrated system for comprehensive interpretation of cross-platform metabolic profile data? Bioanalysis, 1(9), 1511–1514.

    PubMed  Article  CAS  Google Scholar 

  25. Klaassen, C. D., & Aleksunes, L. M. (2010). Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacological Reviews, 62(1), 1–96.

    PubMed  Article  CAS  Google Scholar 

  26. Kostrubsky, V. E., Strom, S. C., Hanson, J., Urda, E., Rose, K., Burliegh, J., et al. (2003). Evaluation of hepatotoxic potential of drugs by inhibition of bile-acid transport in cultured primary human hepatocytes and intact rats. Toxicological Sciences, 76(1), 220–228.

    PubMed  Article  CAS  Google Scholar 

  27. Koulman, A., Lane, G., Harrison, S., & Volmer, D. (2009). From differentiating metabolites to biomarkers. Analytical and Bioanalytical Chemistry, 394(3), 663–670.

    PubMed  Article  CAS  Google Scholar 

  28. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89(1), 147–191.

    PubMed  Article  CAS  Google Scholar 

  29. Lichtenstein, A. H., Appel, L. J., Brands, M., Carnethon, M., Daniels, S., Franch, H. A., et al. (2006). Diet and lifestyle recommendations revision 2006. Circulation, 114(1), 82–96.

    PubMed  Article  Google Scholar 

  30. Manach, C., & Donovan, J. L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research, 38(8), 771–785.

    PubMed  Article  CAS  Google Scholar 

  31. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. American Journal of Clinical Nutrition, 81(1), 230S–242S.

    PubMed  CAS  Google Scholar 

  32. Masson, P., Alves, A. C., Ebbels, T. M. D., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82(18), 7779–7786.

    PubMed  Article  CAS  Google Scholar 

  33. McGhie, T. K., & Walton, M. C. (2007). The bioavailability and absorption of anthocyanins: Towards a better understanding. Molecular Nutrition & Food Research, 51(6), 702–713.

    Article  CAS  Google Scholar 

  34. Minami, Y., Kasukawa, T., Kakazu, Y., Iigo, M., Sugimoto, M., Ikeda, S., et al. (2009). Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences, 106(24), 9890–9895.

    Article  CAS  Google Scholar 

  35. Moazzami, A. A., Andersson, R., & Kamal-Eldin, A. (2011). Changes in the metabolic profile of rat liver after α-tocopherol deficiency as revealed by metabolomics analysis. NMR in Biomedicine, 24(5), 499–505.

    PubMed  Article  CAS  Google Scholar 

  36. Moco, S., Vervoort, J., Moco, S., Bino, R. J., De Vos, R. C. H., & Bino, R. (2007). Metabolomics technologies and metabolite identification. TrAC Trends in Analytical Chemistry, 26(9), 855–866.

    Article  CAS  Google Scholar 

  37. Mursu, J., Nurmi, T., Tuomainen, T.-P., Salonen, J. T., Pukkala, E., & Voutilainen, S. (2008). Intake of flavonoids and risk of cancer in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. International Journal of Cancer, 123(3), 660–663.

    Article  CAS  Google Scholar 

  38. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.

    PubMed  Article  CAS  Google Scholar 

  39. Prior, R. L. (2003). Fruits and vegetables in the prevention of cellular oxidative damage. American Journal of Clinical Nutrition, 78(3 Suppl.), 570S–578S.

    PubMed  CAS  Google Scholar 

  40. Purucker, E., Marschall, H.-U., Geier, A., Gartung, C., & Matern, S. (2002). Increase in renal glutathione in cholestatic liver disease is due to a direct effect of bile acids. American Journal of Physiology, 283(6), F1281–F1289.

    PubMed  CAS  Google Scholar 

  41. Qiu, Y., Cai, G., Su, M., Chen, T., Liu, Y., Xu, Y., et al. (2010). Urinary metabonomic study on colorectal cancer. Journal of Proteome Research, 9(3), 1627–1634.

    PubMed  Article  CAS  Google Scholar 

  42. Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85(2), 809–822.

    PubMed  Article  CAS  Google Scholar 

  43. Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 1–10. doi: 10.1007/s11306-011-0293-4.

  44. Roux, A., Lison, D., Junot, C., & Heilier, J.-F. (2011). Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clinical Biochemistry, 44(1), 119–135.

    PubMed  Article  CAS  Google Scholar 

  45. Sana, T. R., Waddell, K., & Fischer, S. M. (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. Journal of Chromatography B, 871(2), 314–321.

    Article  CAS  Google Scholar 

  46. Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.

    PubMed  Article  CAS  Google Scholar 

  47. Shin, M. H., Lee, D. Y., Liu, K.-H., Fiehn, O., & Kim, K. H. (2010). Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Analytical Chemistry, 82(15), 6660–6666.

    PubMed  Article  CAS  Google Scholar 

  48. Spormann, T. M., Albert, F. W., Rath, T., Dietrich, H., Will, F., Stockis, J.-P., et al. (2008). Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiology, Biomarkers and Prevention, 17(12), 3372–3380.

    PubMed  Article  CAS  Google Scholar 

  49. Stella, C., Beckwith-Hall, B., Cloarec, O., Holmes, E., Lindon, J. C., Powell, J., et al. (2006). Susceptibility of human metabolic phenotypes to dietary modulation. Journal of Proteome Research, 5(10), 2780–2788.

    PubMed  Article  CAS  Google Scholar 

  50. St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B., & Meier, P. J. (2001). Transport of bile acids in hepatic and non-hepatic tissues. Journal of Experimental Biology, 204(10), 1673–1686.

    PubMed  CAS  Google Scholar 

  51. Theodoridis, G., Gika, H., Franceschi, P., Caputi, L., Arapitsas, P., Scholz, M., et al. (2012). LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics, 8(2), 175–185.

    Article  CAS  Google Scholar 

  52. Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479.

    PubMed  Article  CAS  Google Scholar 

  53. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.

    Article  CAS  Google Scholar 

  54. U.S. Department of Agriculture, A. R. S. (2007). USDA Database for the flavonoid content of selected Foods, Release 2.1. Accessed May 4, 2011, from http://www.nal.usda.gov/fnic/foodcomp/Data/Flav/Flav02-1.pdf.

  55. U.S. Department of Health & Human services, & U.S. Department of Agriculture (2010). Dietary Guidelines for Americans, 2010. Accessed Oct 3, 2011 from http://health.gov/dietaryguidelines/dga2010/DietaryGuidelines2010.pdf.

  56. Vanzo, A., Vrhovsek, U., Tramer, F., Mattivi, F., & Passamonti, S. (2011). Exceptionally fast uptake and metabolism of cyanidin 3-glucoside by rat kidneys and liver. Journal of Natural Products, 74(5), 1049–1054.

    PubMed  Article  CAS  Google Scholar 

  57. Villas-Bôas, S. G. (2006). Sampling and sample preparation. In S. G. Villas-Bôas, U. Roessner, M. A. E. Hansen, J. Smedsgaard, & J. Nielsen (Eds.), Metabolome analysis: An introduction (pp. 39–82). New Yersey: Wiley.

  58. WHO (2004). Global strategy on diet, physical activity and health. Accessed September 2, 2011, from http://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf.

  59. Wiklund, S., Johansson, E., Sjostrom, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.

    PubMed  Article  CAS  Google Scholar 

  60. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37(suppl 1), D603–D610.

    PubMed  Article  CAS  Google Scholar 

  61. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35(suppl 1), D521–D526.

    PubMed  Article  CAS  Google Scholar 

  62. Wold, H. (1985). Partial least squares. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (vol. 6, pp. 581–591). New York: Willey.

    Google Scholar 

  63. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.

    Article  CAS  Google Scholar 

  64. Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075.

    PubMed  Article  CAS  Google Scholar 

  65. Yang, H., Pang, W., Lu, H., Cheng, D., Yan, X., Cheng, Y., et al. (2011). Comparison of metabolic profiling of cyanidin-3-O-galactoside and extracts from blueberry in aged mice. Journal of Agricultural and Food Chemistry, 59(5), 2069–2076.

    PubMed  Article  CAS  Google Scholar 

  66. Yin, P., Zhao, X., Li, Q., Wang, J., Li, J., & Xu, G. (2006). Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). Journal of Proteome Research, 5(9), 2135–2143.

    PubMed  Article  CAS  Google Scholar 

  67. Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81(4), 1357–1364.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Domenico Masuero for his expert assistance in MS analysis. The study was carried out with support of: the Slovenian Research Agency (project: Z4-2280), the ADP2010 MetaQuality projects, funded by the Autonomous Province of Trento, Italy and the “Integrated and Sustainable Vine-Wine Management (GISVI)” project (L.R. 26/2010 – Support for the production and exploitation of knowledge) funded by the Autonomous Region of Friuli Venezia Giulia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fulvio Mattivi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Supplementary material 2 (DOC 94 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vanzo, A., Scholz, M., Gasperotti, M. et al. Metabonomic investigation of rat tissues following intravenous administration of cyanidin 3-glucoside at a physiologically relevant dose. Metabolomics 9, 88–100 (2013). https://doi.org/10.1007/s11306-012-0430-8

Download citation

Keywords

  • Anthocyanins
  • Cyanidin 3-glucoside
  • Metabolomics
  • Metabonomics
  • Wistar rats
  • Ultra performance liquid chromatography
  • Quadrupole-time-of-flight mass spectrometry