Advertisement

Neuronal adenosine A2A receptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: a rat model of Huntington’s disease

  • Maria Rosaria Domenici
  • Valentina Chiodi
  • Mirko Averna
  • Monica Armida
  • Antonella Pèzzola
  • Rita Pepponi
  • Antonella Ferrante
  • Michael Bader
  • Kjell Fuxe
  • Patrizia Popoli
Original Article

Abstract

The A2A adenosine receptor (A2AR) is widely distributed on different cellular types in the brain, where it exerts a broad spectrum of pathophysiological functions, and for which a role in different neurodegenerative diseases has been hypothesized or demonstrated. To investigate the role of neuronal A2ARs in neurodegeneration, we evaluated in vitro and in vivo the effect of the neurotoxin 3-nitropropionic acid (3-NP) in a transgenic rat strain overexpressing A2ARs under the control of the neural-specific enolase promoter (NSEA2A rats). We recorded extracellular field potentials (FP) in corticostriatal slice and found that the synaptotoxic effect of 3-NP was significantly reduced in NSEA2A rats compared with wild-type animals (WT). In addition, after exposing corticostriatal slices to 3-NP 10 mM for 2 h, we found that striatal cell viability was significantly higher in NSEA2A rats compared to control rats. These in vitro results were confirmed by in vivo experiments: daily treatment of female rats with 3-NP 10 mg/kg for 8 days induced a selective bilateral lesion in the striatum, which was significantly reduced in NSEA2A compared to WT rats. These results demonstrate that the overexpression of the A2AR selectively at the neuronal level reduced 3-NP-induced neurodegeneration, and suggest an important function of the neuronal A2AR in the modulation of neurodegeneration.

Keywords

Adenosine A2A receptors Huntington’s disease 3-Nitropropionic acid Synaptic transmission Striatum 

Notes

Acknowledgments

We thank Adriano Urcioli and Alessio Gugliotta for the assistance with animal work.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMedGoogle Scholar
  2. 2.
    Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335CrossRefPubMedGoogle Scholar
  4. 4.
    Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonca A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 83:310–331CrossRefPubMedGoogle Scholar
  5. 5.
    Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399CrossRefPubMedGoogle Scholar
  6. 6.
    Kondo T, Mizuno Y, Japanese Istradefylline Study Group (2015) A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol 38:41–46CrossRefPubMedGoogle Scholar
  7. 7.
    Vorovenci RJ, Antonini A (2015) The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother 15:1383–1390CrossRefPubMedGoogle Scholar
  8. 8.
    Fuxe K, Guidolin D, Agnati LF, Borroto-Escuela DO (2015) Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin Ther Targets 19:377–398CrossRefPubMedGoogle Scholar
  9. 9.
    Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81:331–348CrossRefPubMedGoogle Scholar
  10. 10.
    Popoli P, Blum D, Domenici MR, Burnouf S, Chern Y (2008) A critical evaluation of adenosine A2A receptors as potentially “druggable” targets in Huntington’s disease. Curr Pharm Des 14:1500–1511CrossRefPubMedGoogle Scholar
  11. 11.
    Lee CF, Chern Y (2014) Adenosine receptors and Huntington’s disease. Int Rev Neurobiol 119:195–232CrossRefPubMedGoogle Scholar
  12. 12.
    Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS, Reilmann R, Unschuld PG, Wexler A, Margolis RL, Tabrizi SJ (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216CrossRefPubMedGoogle Scholar
  13. 13.
    Varani K, Abbracchio MP, Cannella M, Cislaghi G, Giallonardo P, Mariotti C, Cattabriga E, Cattabeni F, Borea PA, Squitieri F, Cattaneo E (2003) Aberrant A2A receptor function in peripheral blood cells in Huntington’s disease. FASEB J 17:2148–2150CrossRefPubMedGoogle Scholar
  14. 14.
    Blum D, Galas MC, Pintor A, Brouillet E, Ledent C, Muller CE, Bantubungi K, Galluzzo M, Gall D, Cuvelier L, Rolland AS, Popoli P, Schiffmann SN (2003) A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 23:5361–5369CrossRefPubMedGoogle Scholar
  15. 15.
    Huang QY, Wei C, Yu L, Coelho JE, Shen HY, Kalda A, Linden J, Chen JF (2006) Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J Neurosci 26:11371–11378CrossRefPubMedGoogle Scholar
  16. 16.
    Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y (2005) CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 93:310–320CrossRefPubMedGoogle Scholar
  17. 17.
    Domenici MR, Scattoni ML, Martire A, Lastoria G, Potenza RL, Borioni A, Venerosi A, Calamandrei G, Popoli P (2007) Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 28:197–205CrossRefPubMedGoogle Scholar
  18. 18.
    Mievis S, Blum D, Ledent C (2011) A2A receptor knockout worsens survival and motor behaviour in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 41:570–576CrossRefPubMedGoogle Scholar
  19. 19.
    Martire A, Calamandrei G, Felici F, Scattoni ML, Lastoria G, Domenici MR, Tebano MT, Popoli P (2007) Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington’s disease versus wild-type mice. Neurosci Lett 417:78–83CrossRefPubMedGoogle Scholar
  20. 20.
    Tebano MT, Martire A, Chiodi V, Ferrante A, Popoli P (2010) Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF: a possible key mechanism in the pathophysiology of Huntington’s disease. ScientificWorldJournal 10:1768–1782CrossRefPubMedGoogle Scholar
  21. 21.
    Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330CrossRefPubMedGoogle Scholar
  22. 22.
    Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M, Canals M, Terasmaa A, Fernandez-Teruel A, Tobena A, Popova E, Ferre S, Agnati L, Ciruela F, Martinez E, Scheel-Kruger J, Lluis C, Franco R, Fuxe K, Bader M (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56CrossRefPubMedGoogle Scholar
  23. 23.
    Chiodi V, Ferrante A, Ferraro L, Potenza RL, Armida M, Beggiato S, Pezzola A, Bader M, Fuxe K, Popoli P, Domenici MR (2016) Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. J Neurochem 136:907–917CrossRefPubMedGoogle Scholar
  24. 24.
    Popova E, Krivokharchenko A, Ganten D, Bader M (2002) Comparison between PMSG- and FSH-induced superovulation for the generation of transgenic rats. Mol Reprod Dev 63:177–182CrossRefPubMedGoogle Scholar
  25. 25.
    Chiodi V, Mallozzi C, Ferrante A, Chen JF, Lombroso PJ, Di Stasi AM, Popoli P, Domenici MR (2014) Cocaine-induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP. Neuropsychopharmacology 39:569–578CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson WW, Collingridge GL (2007) Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. J Neurosci Methods 162:346–356CrossRefPubMedGoogle Scholar
  27. 27.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  28. 28.
    Brouillet E, Guyot MC, Mittoux V, Altairac S, Condé F, Palfi S, Hantraye P (1998) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem 70:794–805CrossRefPubMedGoogle Scholar
  29. 29.
    Brouillet E, Conde F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468CrossRefPubMedGoogle Scholar
  30. 30.
    Damiano M, Galvan L, Deglon N, Brouillet E (2010) Mitochondria in Huntington’s disease. Biochim Biophys Acta 1802:52–61CrossRefPubMedGoogle Scholar
  31. 31.
    Apolloni S, Amadio S, Parisi C, Matteucci A, Potenza RL, Armida M, Popoli P, D'Ambrosi N, Volonte C (2014) Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis Model Mech 7:1101–1109CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Borlongan CV, Koutouzis TK, Sanberg PR (1997) 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev 21:289–293CrossRefPubMedGoogle Scholar
  33. 33.
    Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, Ferreira DG, Ribeiro JA, Bader M, Cunha RA, do Couto FS, Lopes LV (2014) Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 5:67.  https://doi.org/10.3389/fpsyt.2014.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jastrzębska J, Nowak E, Smaga I, Bystrowska B, Frankowska M, Bader M, Filip M, Fuxe K (2014) Adenosine (A)(2A)receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach. Neuropharmacology 81:318–326CrossRefPubMedGoogle Scholar
  35. 35.
    Batalha VL, Ferreira DG, Coelho JE, Valadas JS, Gomes R, Temido-Ferreira M, Shmidt T, Baqi Y, Buée L, Müller CE, Hamdane M, Outeiro TF, Bader M, Meijsing SH, Sadri-Vakili G, Blum D, Lopes LV (2016) The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep 6:31493.  https://doi.org/10.1038/srep31493 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 60:356–359CrossRefPubMedGoogle Scholar
  37. 37.
    Ouary S, Bizat N, Altairac S, Menetrat H, Mittoux V, Conde F, Hantraye P, Brouillet E (2000) Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97:521–530CrossRefPubMedGoogle Scholar
  38. 38.
    Mu S, OuYang L, Liu B, Zhu Y, Li K, Zhan M, Liu Z, Jia Y, Lei W, Reiner A (2011) Preferential interneuron survival in the transition zone of 3-NP-induced striatal injury in rats. J Neurosci Res 89:744–754CrossRefPubMedGoogle Scholar
  39. 39.
    Colle D, Santos DB, Moreira EL, Hartwig JM, dos Santos AA, Zimmermann LT, Hort MA, Farina M (2013) Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One 8:e67658.  https://doi.org/10.1371/journal.pone.0067658 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tasset I, Perez-Herrera A, Medina FJ, Arias-Carrion O, Drucker-Colin R, Tunez I (2013) Extremely low-frequency electromagnetic fields activate the antioxidant pathway Nrf2 in a Huntington’s disease-like rat model. Brain Stimul 6:84–86CrossRefPubMedGoogle Scholar
  41. 41.
    Mogami M, Hida H, Hayashi Y, Kohri K, Kodama Y, Gyun Jung C, Nishino H (2002) Estrogen blocks 3-nitropropionic acid-induced Ca2+i increase and cell damage in cultured rat cerebral endothelial cells. Brain Res 956:116–125CrossRefPubMedGoogle Scholar
  42. 42.
    Nishino H, Nakajima K, Kumazaki M, Fukuda A, Muramatsu K, Deshpande SB, Inubushi T, Morikawa S, Borlongan CV, Sanberg PR (1998) Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. Neurosci Res 30:303–312CrossRefPubMedGoogle Scholar
  43. 43.
    Tebano MT, Pintor A, Frank C, Domenici MR, Martire A, Pepponi R, Potenza RL, Grieco R, Popoli P (2004) Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J Neurosci Res 77:100–107CrossRefPubMedGoogle Scholar
  44. 44.
    Wirkner K, Gerevich Z, Krause T, Gunther A, Koles L, Schneider D, Norenberg W, Illes P (2004) Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology 46:994–1007CrossRefPubMedGoogle Scholar
  45. 45.
    Kim GW, Copin JC, Kawase M, Chen SF, Sato S, Gobbel GT, Chan PH (2000) Excitotoxicity is required for induction of oxidative stress and apoptosis in mouse striatum by the mitochondrial toxin, 3-nitropropionic acid. J Cereb Blood Flow Metab 20:119–129CrossRefPubMedGoogle Scholar
  46. 46.
    Centonze D, Prosperetti C, Barone I, Rossi S, Picconi B, Tscherter A, De Chiara V, Bernardi G, Calabresi P (2006) NR2B-containing NMDA receptors promote the neurotoxic effects of 3-nitropropionic acid but not of rotenone in the striatum. Exp Neurol 202:470–479CrossRefPubMedGoogle Scholar
  47. 47.
    Ramirez SH, Fan S, Maguire CA, Perry S, Hardiek K, Ramkumar V, Gelbard HA, Dewhurst S, Maggirwar SB (2004) Activation of adenosine A2A receptor protects sympathetic neurons against nerve growth factor withdrawal. J Neurosci Res 77:258–269CrossRefPubMedGoogle Scholar
  48. 48.
    Visentin S, De Nuccio C, Bernardo A, Pepponi R, Ferrante A, Minghetti L, Popoli P (2013) The stimulation of adenosine A2A receptors ameliorates the pathological phenotype of fibroblasts from Niemann-Pick type C patients. J Neurosci 33:15388–15393CrossRefPubMedGoogle Scholar
  49. 49.
    Ferrante A, De Nuccio C, Pepponi R, Visentin S, Martire A, Bernardo A, Minghetti L, Popoli P (2016) Stimulation of adenosine A2A receptors reduces intracellular cholesterol accumulation and rescues mitochondrial abnormalities in human neural cell models of Niemann-Pick C1. Neuropharmacology 103:155–162CrossRefPubMedGoogle Scholar
  50. 50.
    Mishra J, Kumar A (2014) Improvement of mitochondrial NAD(+)/FAD(+)-linked state-3 respiration by caffeine attenuates quinolinic acid induced motor impairment in rats: implications in Huntington’s disease. Pharmacol Rep 66:1148–1155CrossRefPubMedGoogle Scholar
  51. 51.
    Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171CrossRefPubMedGoogle Scholar
  52. 52.
    Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139:1019–1055CrossRefPubMedGoogle Scholar
  53. 53.
    Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 18:2929–2942CrossRefPubMedGoogle Scholar
  54. 54.
    Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, Lin CJ, Chen WP, Shen YC, Chen HM, Chen JB, Lai HL, Yang CW, Chiang MC, Wu YS, Chang C, Chen JF, Fang JM, Lin YL, Chern Y (2011) A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS One 6(6):e20934CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chou AH, Chen YL, Chiu CC, Yuan SJ, Weng YH, Yeh TH, Lin YL, Fang JM, Wang HL (2015) T1-11 and JMF1907 ameliorate polyglutamine-expanded ataxin-3-induced neurodegeneration, transcriptional dysregulation and ataxic symptom in the SCA3 transgenic mouse. Neuropharmacology 99:308–317CrossRefPubMedGoogle Scholar
  56. 56.
    Fink JS, Kalda A, Ryu H, Stack EC, Schwarzschild MA, Chen JF, Ferrante RJ (2004) Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 88:538–544CrossRefPubMedGoogle Scholar
  57. 57.
    Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF (2015) Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol Dis 79:70–80CrossRefPubMedGoogle Scholar
  58. 58.
    Marchi M, Raiteri L, Risso F, Vallarino A, Bonfanti A, Monopoli A, Ongini E, Raiteri M (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br J Pharmacol 136:434–440CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vaz SH, Lérias SR, Parreira S, Diógenes MJ, Sebastião AM (2015) Adenosine A2A receptor activation is determinant for BDNF actions upon GABA and glutamate release from rat hippocampal synaptosomes. Purinergic Signal 11:607–612CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192CrossRefPubMedGoogle Scholar
  61. 61.
    Sánchez-Carbente MR, Massieu L (1999) Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J Neurochem 72:129–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Maria Rosaria Domenici
    • 1
  • Valentina Chiodi
    • 1
  • Mirko Averna
    • 1
  • Monica Armida
    • 1
  • Antonella Pèzzola
    • 1
  • Rita Pepponi
    • 1
  • Antonella Ferrante
    • 1
  • Michael Bader
    • 2
  • Kjell Fuxe
    • 3
  • Patrizia Popoli
    • 1
  1. 1.National Center for Drug Research and EvaluationIstituto Superiore di SanitàRomeItaly
  2. 2.Max-Delbrűck-Center for Molecular MedicineBerlinGermany
  3. 3.Department of NeuroscienceKarolinska InstitutetStockholmSweden

Personalised recommendations