Morphological and DNA analyses suggest the reinstatement of four synonymized Cecropia species

Abstract

The genus Cecropia contains 61 species of high ecological importance in the Neotropics. Cecropia pachystachya Trécul has a wide geographic distribution and high morphological variability. The last taxonomic review of C. pachystachya was performed in 2005 and incorporated seven other Cecropia species by synonymization. However, this synonymization was not fully accepted by experts in Urticaceae because of high morphological variations in the taxon. In this study, we aimed to evaluate whether the morphological variations observed in C. pachystachya morphotypes also occurred at the DNA level and to contribute to the understanding of the evolutionary relationship between species morphotypes. Morphological analysis of eight species descriptors in 28 accessions of C. pachystachya allowed the differentiation of all five morphotypes evaluated. The analysis of the trnL-trnF (plastid) and ITS (nuclear) regions from 24 accessions by maximum parsimony, maximum likelihood, and Bayesian inference methods showed a robust molecular differentiation between C. pachystachya morphotypes. Climate was the main factor that seemed to influence clade formation in the phylogenetic trees. The higher genetic relation among morphotypes from the Amazon, Caatinga, and Cerrado regions corroborated previous hypotheses of close relationships between these biomes in past ages. The morphotype group from the Atlantic Forest seemed to be related to the proposed Pleistocene refuges to this biome. The overall analysis of morphological and molecular data shows robust differences between C. pachystachya synonymized morphotypes, which indicates the need of a taxonomic revision of the C. pachystachya complex and subsequent reinstatement of at least four synonymized species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:215–222

    Google Scholar 

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Google Scholar 

  4. Batalha-Filho H, Fjeldsa J, Fabre PH, Miyaki CY (2013) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50

    Google Scholar 

  5. Behling H (2001) Late Quaternary environmental changes in the Lagoa da Curuça region (eastern Amazonia, Brazil) and evidence of Podocarpus in the Amazon lowland. Veg Hist Archaeobotany 10:175–183

    Google Scholar 

  6. Behling H, Keim G, Irion G, Junk W, De Mello J (2001) Holocene environmental changes in the Central Amazon Basin inferred from Lago Calado (Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 173:87–101

    Google Scholar 

  7. Benson WW (1985) Amazon ant-plants. In: Prance GT, Lovejoy TE (eds) Amazonia, 1st edn. Pergamon Press, Oxford, pp 239–266

    Google Scholar 

  8. Berg CC (1978) Cecropiaceae a new family of the Urticales. Taxon 27:39–44

    Google Scholar 

  9. Berg CC, Rosselli PF (2005) Cecropia. Flora Neotropica 94:1–230

    Google Scholar 

  10. Bigarella JJ, Andrade-Lima D, Riehs PJ (1975) Consideracões a respeito das mudanças paleoambientais na distribuição de algumas espécies vegetais e animais no Brasil. An Acad Bras Ciênc 47:411–464

    Google Scholar 

  11. Carauta JPP (1996) Grupo “Cecropia pachystachya”. In: Berg, CC. Cecropia (Cecropiaceae) no Brasil, ao sul da Bacia Amazônica. Albertoa 4:213–221

  12. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Google Scholar 

  13. Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    CAS  PubMed  Google Scholar 

  14. Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C (2014) Prediction of phylogeographic endemism in an environmentally complex biome. P Roy Soc B-Biol Sci 281:1–8

    Google Scholar 

  15. Cavers S, Telford A, Arenal Cruz F, Pérez Castañeda A, Valencia R, Navarro C, Buonamici A, Lowe A, Vendramin G (2013) Cryptic species and phylogeographical structure in the tree Cedrela odorata L. throughout the Neotropics. J Biogeogr 40:732–746

    Google Scholar 

  16. Cazé ALR, Mäder G, Nunes TS, Queiroz LP, de Oliveira G, Diniz-Filho JAF, Bonatto SL, Freitas LB (2016) Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest. Mol Phylogenet Evol 101:242–251

    PubMed  Google Scholar 

  17. Costa LP, Leite YLR, da Fonseca GAB, da Fonseca MT (2000) Biogeography of South American forest mammals: endemism and diversity in the Atlantic forest. Biotropica 32:872–881

    Google Scholar 

  18. Cuatrecasas J (1959) Studies in south American plants—V. Brittonia 11:163–172

    Google Scholar 

  19. DaSilva MB, Pinto-da-Rocha R, DeSouza AM (2015) A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic Rain Forest using harvestmen distribution data. Cladistics 31:692–705

    Google Scholar 

  20. Datwyler SL, Weiblen GD (2004) On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences. Am J Bot 91:767–777

    PubMed  Google Scholar 

  21. Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP (2003) Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20:248–254

    CAS  PubMed  Google Scholar 

  22. Duminil J, Kenfack D, Viscosi V, Grumiau L, Hardy OJ (2012) Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae). Mol Phylogenet Evol 62:275–285

    PubMed  Google Scholar 

  23. Dumortier BCJ (1829) Analyse des familles des plantes, avec l’indication des principaux genres qui s’y rattachent. J. Casterman aîné, Tournay

  24. Fu LF, Huang SL, Monro AK, Liu Y, Wen F, Wei YG (2017) Pilea nonggangensis (Urticaceae), a new species from Guangxi, China. Phytotaxa 313:130–136. https://doi.org/10.11646/phytotaxa.313.1.9

    Article  Google Scholar 

  25. Galindo-Leal C, Câmara IG (2003) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, DC

    Google Scholar 

  26. Gandara FB, Da-Silva PR, de Moura TM, Pereira FB, Gobatto CR, Ferraz EM, Kageyama PY, Tambarussi EV (2019) The effects of habitat loss on genetic diversity and population structure of Cedrela fissilis Vell. Trop Plant Biol 12:282–292

    Google Scholar 

  27. Garcia MG, Silva RS, Carniello MA, Veldman JW, Rossi AAB, Oliveira LO (2011) Molecular evidence of cryptic speciation, historical range expansion, and recent intraspecific hybridization in the Neotropical season forest tree Cedrela fissilis (Meliaceae). Mol Phylogenet Evol 61:639–649

    CAS  PubMed  Google Scholar 

  28. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, New York

    Google Scholar 

  29. Grosse-Veldmann B, Nürk NM, Smissen R, Breitwieser I, Quandt D, Weigend M (2016) Pulling the sting out of nettle systematics—a comprehensive phylogeny of the genus Urtica L. (Urticaceae). Mol Phylogenet Evol 102:9–19

    PubMed  Google Scholar 

  30. Gutiérrez-Valencia J, Chomicki G, Renner SS (2017) Recurrent breakdowns of mutualisms with ants in the neotropical ant-plant genus Cecropia (Urticaceae). Mol Phylogenet Evol 111:196–205

    PubMed  Google Scholar 

  31. Hadiah JT, Conn BJ, Quinn CJ (2008) Infra-familial phylogeny of Urticaceae, using chloroplast sequence data. Aust Syst Bot 21:375–385

    CAS  Google Scholar 

  32. Hall T (2005) BioEdit Sequence Alignment Editor for Windows 95. Ibis Therapeutics, Carlsbad

  33. Hermanowski B, Da Costa ML, Behling H (2012) Environmental changes in southeastern Amazonia during the last 25,000 year revealed from a paleoecological record. Quat Res 77:138–148

    Google Scholar 

  34. Holder M, Lewis P (2003) Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 4:275–284. https://doi.org/10.1038/nrg1044

    CAS  Article  PubMed  Google Scholar 

  35. IBGE (2016) Mapa de Clima do Brasil. Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro

  36. Kim C, Deng T, Chase M, Zhang DG, Nie ZL, Sun H (2015) Generic phylogeny and character evolution in Urticeae (Urticaceae) inferred from nuclear and plastid DNA regions. Taxon 64:65–78

    Google Scholar 

  37. Ledo RMD, Colli GR (2017) The historical connections between the Amazon and the Atlantic Forest revisited. J Biogeogr 44:2551–2563

    Google Scholar 

  38. Mangaravite E, Vinson CC, Rody HVH, Garcia MG, Carniello MA, Silva RS, Oliveira LO (2016) Contemporary patterns of genetic diversity of Cedrela fissilis offer insight into the shaping of seasonal forest in eastern South America. Am J Bot 103:307–316

    PubMed  Google Scholar 

  39. Martius CFPV (1853) Flora Brasiliensis. Apud. Frid. Fleischer in Comm, Lipsiae

  40. Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  41. Monro AK (2006) The revision of species-rich genera: a phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on cpDNA, nrDNA, and morphology. Am J Bot 93:426–441

    CAS  PubMed  Google Scholar 

  42. Novaes R, Lemos-Filho J, Ribeiro R, Lovato M (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol Ecol 19:985–998

    PubMed  Google Scholar 

  43. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141–194

    Google Scholar 

  44. Por FD (1992) Sooretama: the Atlantic rain forest of Brazil. SPB Academic, The Hague

  45. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    PubMed  Google Scholar 

  46. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Google Scholar 

  47. Prance GT (1982) Forest refuges: evidence from woody angiosperms. In: Prance GT (ed) Biological diversification in the tropics, 1st edn. Columbia University Press, New York, pp 137–158

    Google Scholar 

  48. Rambaut A, Drummond AJ, Suchard M (2013) Tracer v1.6. BEAST software. http://beast.bio.ed.ac.uk.Tracer. Accessed 20 Oct 2018

  49. Reed DL, Carpenter K, deGravelle MJ (2002) Molecular systematics of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches. Mol Phylogenet Evol 23:513–524

    CAS  PubMed  Google Scholar 

  50. Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin MJ (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos F, Habel J (eds) Biodiversity hotspots, 1st edn. Springer, Berlin, Heidelberg, pp 405–434

    Google Scholar 

  51. Romaniuc-Neto S (1999) Cecropioideae (CC Berg) Romaniuc-Neto stat. nov. (Moraceae-Urticales). Albertoa 4:13–16

    Google Scholar 

  52. Romaniuc-Neto S, Gaglioti AL, Guido BMO (2009) Urticaceae Juss. of the “Parque Estadual das Fontes do Ipiranga”, São Paulo, SP, Brazil. Hoehnea 36:193–205

    Google Scholar 

  53. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  54. Rull V (2008) Speciation timing and neotropical biodiversity: the tertiary-quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17:2722–2729

    PubMed  Google Scholar 

  55. Santos AMM, Cavalcanti DR, Silva JMC, Tabarelli M (2007) Biogeographical relationships among tropical forests in North-Eastern Brazil. J Biogeogr 34:437–446

    Google Scholar 

  56. Sharma K, Mishra AK, Misra RS (2008) A simple and efficient method for extraction of genomic DNA from tropical tuber crops. Afr J Biotechnol 7:1018–1022

    CAS  Google Scholar 

  57. Silva JMC, Sousa MC, Castelletti CHM (2004) Areas of endemism for passerine birds in the Atlantic forest, South America. Glob Ecol Biogeogr 13:85–92

    Google Scholar 

  58. Simon MF, Grether R, De Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106:20359–20364

    CAS  PubMed  Google Scholar 

  59. Sobral-Souza T, Lima-Ribeiro MS (2017) De volta ao passado: revisitando a história biogeográfica das florestas neotropicais úmidas. Oecol Aust 21:93–107

    Google Scholar 

  60. Sobral-Souza T, Lima-Ribeiro MS, Solferini VN (2015) Biogeography of Neotropical rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol Ecol 29:643–655

    Google Scholar 

  61. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0 b10. Sinauer Associates, Sunderland

  62. Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am J Bot 89:1531–1546

    CAS  PubMed  Google Scholar 

  63. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    CAS  PubMed  Google Scholar 

  64. Teixeira AMC, Pinto JRR, Amaral AG, Munhoz CBR (2017) Angiosperm species of “Cerrado” sensu stricto in Terra Ronca State Park, Brazil: floristics, phytogeography and conservation. Braz J Bot 40:225–234

    Google Scholar 

  65. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Trécul A (1847) Sur la famille des Artocarpées. Ann Sci Nat Bot Biol 3:38–157

    Google Scholar 

  67. Treiber EL, Gaglioti AL, Romaniuc-Neto S, Madriñán S, Weiblen GD (2016) Phylogeny of the Cecropieae (Urticaceae) and the evolution of an ant-plant mutualism. Syst Bot 14:56–66

    Google Scholar 

  68. Tseng YH, Monro AK, Wei YG, Hu JM (2019) Molecular phylogeny and morphology of Elatostema s.l. (Urticaceae): implications for inter- and infrageneric classification. Mol Phylogenet Evol 132:251–264

    CAS  PubMed  Google Scholar 

  69. Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol 22:1193–1213

    CAS  PubMed  Google Scholar 

  70. Vanzolini PE, Williams EE (1981) The vanishing refuge: a mechanism for ecogeographic speciation. Pap Avulsos Zool 34:251–255

    Google Scholar 

  71. Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706

    Google Scholar 

  72. White TJ, Bruns T, Lee SJ, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications, 1st edn. Academic Press, San Diego, pp 315–322

    Google Scholar 

  73. Wu ZY, Monro AK, Milne RI, Wang H, Yi TS, Liu J, Li DZ (2013) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Mol Phylogenet Evol 69:814–827

    PubMed  Google Scholar 

Download references

Data archiving statement

The accession used in this work were deposited in the Herbarium of the Instituto de Botância de São Paulo. The number of each access is reported in Table 1. The sequences were deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) under numbers shown in Table 1.

Funding

This study was supported by Fundacão Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná, grant number 229/2010 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, grant number 001.

Author information

Affiliations

Authors

Contributions

Conceptualization: Paulo Roberto Da-Silva, André Luiz Gaglioti, Sergio Romaniuc-Neto; methodology: Jhonnatan De Oliveira Santos, Felipe Liss Zchonski, Laura Pilati; formal analysis and investigation: Jhonnatan De Oliveira Santos, Laura Pilati, Felipe Liss Zchon, André Luiz Gaglioti, Paulo Roberto Da Silva; writing—original draft preparation: Jhonnatan De Oliveira Santos; writing—review and editing: Paulo Roberto Da-Silva, André Luiz Gaglioti, Sergio Romaniuc-Neto; funding acquisition: Paulo Roberto Da-Silva; supervision: Paulo Roberto Da-Silva, André Luiz Gaglioti. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paulo Roberto Da-Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J. Beaulieu

Electronic supplementary material

ESM 1

(PDF 354 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, J.D.O., Zchonski, F.L., Pilati, L. et al. Morphological and DNA analyses suggest the reinstatement of four synonymized Cecropia species. Tree Genetics & Genomes 16, 51 (2020). https://doi.org/10.1007/s11295-020-01445-z

Download citation

Keywords

  • Cecropia adenopus
  • Cecropia catarinensis
  • Cecropia digitata
  • Cecropia lyratiloba
  • Cecropia pachystachya
  • Urticaceae