Skip to main content

Advertisement

Log in

Guidelines for the restoration of the tropical timber tree Anacardium excelsum: first input from genetic data

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Translocation of trees has been used as a common method to mediate genetic conservation and restoration of forests. However, very few programs include strategies developed to recover or maintain the genetic diversity of the translocated species. Anacardium excelsum is a tree native to the tropics of America that is extensively used in forestry. In Colombia, restoration of forests through the translocation of native species has regained importance, and A. excelsum has been recently included in the National Strategy for Plant Conservation. Thus, in order to define the level of genetic structure and the level of genetic diversity within certain regions where remnants of the seasonally dry tropical forests (SDTF) of Colombia have been retained, we genotyped 106 trees using nuclear inter-simple sequence repeats (ISSR) and sequenced two non-coding chloroplast loci for these specimens. Our ISSR dataset revealed the existence of a gradient in genetic diversity within A. excelsum with the most diverse remnants encountered in the south of the country, while the localities sampled in the Caribbean coast and in the Chicamocha canyon were less diverse. Chloroplast loci also pointed out the very low genetic diversity of A. excelsum from the Chicamocha canyon and we propose to prioritize this area within future conservation programs. Both chloroplast and nuclear markers supported the existence of genetic divergence between distinct regions of Colombia, uncovering genetic differences between inter-Andean, Caribbean, and Chicamocha canyon A. excelsum remnants. Hence, we advise to choose the provenance of seeds or plants carefully before translocation and to consider minimal mixing of material from different regions when initializing restoration programs for A. excelsum, in Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Honnay O (2011) Forest restoration, biodiversity and ecosystem functioning. BMC Ecol 11:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Ang CC, O’Brien MJ, Ng KKS, Lee PC, Hector A, Schmid B, Shimizu KK (2016) Genetic diversity of two tropical tree species of the Dipterocarpaceae following logging and restoration in Borneo: high genetic diversity in plots with high species diversity. Plant Ecol Divers 9:459–469

    Article  Google Scholar 

  • Banda-R K, Delgado-Salinas A, Dexter KG et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Barreto D, Valero N, Muñoz A et al (2007) Efecto de microorganismos rizosféricos sobre germinación y crecimiento temprano de Anacardium excelsum. Zonas Áridas 11:240–250

    Google Scholar 

  • Barton N, Etheridge A, Kelleher J, Véber A (2013) Inference in two dimensions: allele frequencies versus lengths of shared sequence blocks. Theor Popul Biol 87:105–119

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996-2004) Genetix 4.02, Logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier

  • Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernández-Manjarrés J (2013) Habitat restoration and climate change: dealing with climate variability, incomplete data, and management decisions with tree translocations. Restor Ecol 21:530–536

    Article  Google Scholar 

  • Bernal R, Gradstein SR, Celis M (eds) (2015) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Available from: http://catalogoplantasdecolombia.unal.edu.co

  • Burnham RJ, Carranco NL (2004) Miocene winged fruits of Loxopterygium (Anacardiaceae) from the Ecuadorian Andes. ‎Am J Bot 91:1767–1773

    Article  PubMed  Google Scholar 

  • Caetano S, Prado D, Pennington RT et al (2008) The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Mol Ecol 17:3147–3159

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas LD, Salinas NR (2007) Libro rojo de plantas de Colombia, vol 4. Especies maderables amenazadas, primera parte. Instituto Amazónico de Investigaciones Científicas (SINCHI), Bogotá, D.C.

  • Collevatti RG, Estolano R, Ribeiro ML, Rabelo SG, Lima EJ, Munhoz CBR (2014) High genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species. Plant Syst Evol 300:1671–1681

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Demography and harvest potential of Latin American timber species: data from a large, permanent plot in Panama. J Trop For Sci 7:599–622

    Google Scholar 

  • Crema S, Cristofolini G, Rossi M, Conte L (2009) High genetic diversity detected in the endemic Primula apennina Widmer (Primulaceae) using ISSR fingerprinting. Plant Syst Evol 280:29–36

    Article  CAS  Google Scholar 

  • D'antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713

    Article  Google Scholar 

  • Dinesh MR, Hemanth KV, Ravishankar KV et al (2011) Mangifera. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg

    Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ennos RA (1999) Using organelle markers to elucidate the history, ecology and evolution of plant populations. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution, London and New York, pp 1–19

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    PubMed  PubMed Central  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Galindo-Rodríguez C, Roa-Fuentes LL (2017) Seed desiccation tolerance and dispersal in tropical dry forests in Colombia: implications for ecological restoration. For Ecol Manag 404:289–293

    Article  Google Scholar 

  • Garen EJ, Saltonstall K, Ashton MS, Slusser JL, Mathias S, Hall JS (2011) The tree planting and protecting culture of cattle ranchers and small-scale agriculturalists in rural Panama: opportunities for reforestation and land restoration. For Ecol Manag 261:1684–1695

    Article  Google Scholar 

  • Ghazoul J, McLeish M (2001) Reproductive ecology of tropical forest trees in logged and fragmented habitats in Thailand and Costa Rica. Plant Ecol 153:335–345

    Article  Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    PubMed  CAS  Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368

    Article  PubMed  CAS  Google Scholar 

  • Hormaza JI, Wünsch A (2007) Pistachio. In: Kole C (ed) Genome mapping and molecular breeding in plants, fruits and nuts, vol 4. Springer, Berlin, Heidelberg

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M et al (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Plant Sci 18:147–155

    Google Scholar 

  • Hughes AR, Inouye BD, Johnson MT (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Janes KJ, Miller JM, Dupuis JR et al (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602

    Article  PubMed  Google Scholar 

  • Jump AS, Marchant R, Penuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keller M, Kollmann J, Edwards PJ (2000) Genetic introgression from distant provenances reduces fitness in local weed populations. J Appl Ecol 37:647–659

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Lamb D (1998) Large scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restor Ecol 6:271–279

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7:42–50

    Article  Google Scholar 

  • Lozano B, Franco O, Bonilla J (2012) Estimación del crecimiento diamétrico, de Anacardium excelsum (Kunth) Skeels, por medio de modelos no lineales, en bosques naturales del departamento del Tolima. Bol Cient Mus Hist Nat 16:19–32

    Google Scholar 

  • Maschinski J, Duquesnel J (2007) Successful reintroductions of the endangered long-lived Sargent’s cherry palm, Pseudophoenix sargentii, in the Florida keys. Biol Conserv 134:122–129

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S et al (2005) “How local is local?” - a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Meli P, Holl KD, Rey Benayas JM, Jones HP, Jones PC, Montoya D, Moreno Mateos D (2017) A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One 12:e0171368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196

    Article  Google Scholar 

  • Menges ES, Smith SA, Weekley CW (2016) Adaptive introductions: how multiple experiments and comparisons to wild populations provide insights into requirements for long-term introduction success of an endangered shrub. Plant Divers 38:238–246

    Article  PubMed  PubMed Central  Google Scholar 

  • MiniAmbiente (2015) Plan Nacional de Restauración: restauración ecológica, rehabilitación y recuperación de áreas disturbadas, Ministerio de Ambiente y Desarrollo Sostenible de Colombia, Bogotá D.C (http://www.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/gestion-en-biodiversidad/restauracion-ecologica)

  • Morales GA (2016) Plan de manejo y conservación del Caracolí (Anacardium excelsum) en la jurisdicción CAR. Bogotá, Colombia

  • Moreira PA, Fernandes GW, Collevatti RG (2009) Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry Neotropical tree. For Ecol Manag 258:2690–2695

    Article  Google Scholar 

  • Munoz-Uribe PA (2012) Holocene climate variability in tropical South America: case history from a high-mountain wet zone in NW Colombia based on palynology and X-ray microfluorescence. PhD Dissertation, University of Geneva

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research – an update. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273

    Article  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Syst 40:437–457

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Pizano C, García H (eds) (2014) El bosque seco tropical en Colombia. Instituto Alexander von Humbolt, Bogotá D.C

  • Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Mo Bot Gard 80:902–927

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rohlf FJ (1992) NTSYS-pc: Numerical taxonomy and multivariate analysis system version 1.80. Exeter Software. Department of Ecology and Evolution, State University of New York, New York

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Thomas E, Tobón CG, Gutiérrez JP et al (2017) Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodivers Conserv 26:825–842

    Article  Google Scholar 

  • Tuisima LL, Hlásná-Čepková P, Lojka B, Weber JC, Alves-Milho SF (2016) Genetic diversity in Guazuma crinita from eleven provenances in the Peruvian Amazon revealed by ISSR markers. Bosque 37:63–70

    Article  Google Scholar 

  • Valencia-Duarte J, Trujillo Ortiz LN, Vargas Ríos O (2012) Dinámica de la vegetación en un enclave semiárido del río Chicamocha, Colombia. Biota Colomb 13:40–59

    Google Scholar 

  • Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites Jr JW (2011) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Fernando Fernández Méndez, Omar Aurelio Melo, Luis C. Acosta Cadenas, German Urueña Serrano, Carlos A. Morales Carranza, Jeferson D. Galvis Jiménez, Sonia C. Camargo Roa, Jhon J. Borda Velasquez, Ivan D. Vergara Terreros, Vannesa A. Montoya Sánchez, and Raul Rico Molina for their assistance in the field and for providing samples of Anacardium excelsum from Colombia. We would like to thank two anonymous reviewers for their insightful and constructive comments.

Data Archiving Statement

The distinct haplotypes detected were deposited in GENBANK under numbers MG309720-MG309723 and MG309724-MG309726 for rpl20-rps12 and trnL-trnF, respectively.

Funding

This research was supported by the program “Talento Humano” No. 043-16 from the Universidad del Tolima attributed to K. T. B-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly T. Bocanegra-González.

Additional information

Communicated by F. Gugerli

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Fig. S1

(PDF 37 kb)

ESM 3

(XLSX 32.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocanegra-González, K.T., Guillemin, ML. Guidelines for the restoration of the tropical timber tree Anacardium excelsum: first input from genetic data. Tree Genetics & Genomes 14, 59 (2018). https://doi.org/10.1007/s11295-018-1271-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1271-z

Keywords

Navigation