Skip to main content
Log in

The southwestern origin and eastward dispersal of pear (Pyrus pyrifolia) in East Asia revealed by comprehensive genetic structure analysis with SSR markers

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Pyrus pyrifolia is considered one of the most important cultivated Pyrus species. Hundreds of landraces and bred cultivars have been developed through the natural and artificial hybridizations necessary due to self-incompatibility. In this study, the genetic diversity of 478 Pyrus accessions, including Chinese landraces, bred cultivars, and wild samples, as well as introduced pear cultivars from Japan and Korea, was investigated with a set of 17 simple sequence repeat (SSR) markers distributed across all 17 linkage groups of the pear genome. A total of 121 alleles were detected, including 4 rare alleles with a frequency lower than 5%. Diversity statistics indicated a high level of genetic variation as quantified by the average values of the observed heterozygosity, the expected heterozygosity, and Wright’s fixation index, at 0.76, 0.78, and 0.02, respectively. Population structure and discriminant analysis of principal component analysis implied extensive genetic communication between sand pears in China and revealed four contiguous geographical clusters with overlapping geographical regions. The diversity of the four clusters and approximate Bayesian computation (ABC) indicated that sand pear spread from west to east along the Pearl River and Yangtze River valleys. High diversity and polyphyletic genetic components of cultivars in southwestern China further support southwestern China as the probable center of divergence for Pyrus species. A core collection of 80 out of 470 cultivars was selected, accounting for about 17% of accessions, and capturing 91% of all alleles, including all rare alleles. Our research provides a comprehensive understanding of sand pear germplasm in East Asia and constructs a preliminary core collection, which will be useful for association genetics studies, germplasm conservation, and breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranzana MJ, Abbassi E, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balas FC, Osuna MD, Domínguez G, Pérez-Gragera F, López-Corrales M (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Genomes 10:703–710

    Article  Google Scholar 

  • Baraket G, Chatti K, Saddoud O, Abdelkarim AB, Mars M, Trifi M, Hannachi AS (2011) Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Report 29:171–184

    Article  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025

    PubMed  PubMed Central  Google Scholar 

  • Brown A (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Brown. A., Marshall, DR. (1973) Optimum sampling strategies in genetic conservation (summary). Lecture Notes in Computer Science  4768:36–56

  • Campbell CS, Evans RC, Morgan DR, Dickinson TA, Arsenault MP (2007) Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Plant Syst Evol 266:119–145

    Article  CAS  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 29:404–410

    Article  CAS  Google Scholar 

  • Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121–148

    Article  Google Scholar 

  • Chen H, Song Y, Li L, Khan MA, Li X, Korban SS, Wu J, Zhang S (2015) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Report 33:316–325

    Article  CAS  Google Scholar 

  • Cornuet (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics 11:401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong D, Fu X, Yuan F, Chen P, Zhu S, Li B, Yang Q, Yu X, Zhu D (2014) Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genet Resour Crop Evol 61:173–183

    Article  Google Scholar 

  • Dos Santos ARF, Ramos-Cabrer AM, Díaz-Hernández MB, Pereira-Lorenzo S (2011) Genetic variability and diversification process in local pear cultivars from northwestern Spain using microsatellites. Tree Genet Genomes 7:1041–1056

    Article  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM, Bonatto SL, Excoffier L (2007) Statistical evaluation of alternative models of human evolution. Proceedings of the National Academy of Sciences 104(45):17614–17619.

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan L, Zhang M, Liu Q, Li L, Song Y, Wang L, Zhang S, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Report 31:1271–1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Hamrick JL, Godt M (1996) Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B-Biological Sciences 351:1291–1298

    Article  Google Scholar 

  • Hoelzel AR (2010) Looking backwards to look forwards: conservation genetics in a changing world. Conserv Genet 11:655–660

    Article  Google Scholar 

  • Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294

    Article  CAS  Google Scholar 

  • Hu J, Wang P, Su Y, Wang R, Li Q, Sun K (2015) Microsatellite diversity, population structure, and core collection formation in melon germplasm. Plant Mol Biol Report 33:439–447

    Article  CAS  Google Scholar 

  • Jiang S, Zong Y, Yue X, Postman J, Teng Y, Cai D (2015) Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L. Mol Gen Genomics 290:225–237

    Article  CAS  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim K, Chung H, Cho G, Ma K, Chandrabalan D, Gwag J, Kim T, Cho E, Park Y (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Lassois L, Denancé C, Ravon E, Guyader A, Guisnel R, Hibrand-Saint-Oyant L, Poncet C, Lasserre-Zuber P, Feugey L, Durel C (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Report 34:827–844

    Article  CAS  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon A, Boursiquot J, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Z, Zhang X, Nie Y, He D, Wu M (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48:2064–2068

    Article  Google Scholar 

  • Liu J, Zheng X, Potter D, Hu C, Teng Y (2012) Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. Biochem Syst Ecol 45:69–78

    Article  CAS  Google Scholar 

  • Liu J, Sun P, Zheng X, Potter D, Li K, Hu C, Teng Y (2013) Genetic structure and phylogeography of Pyrus pashia L. (Rosaceae) in Yunnan Province, China, revealed by chloroplast DNA analyses. Tree Genet Genomes 9:433–441

    Article  Google Scholar 

  • Liu QW, Song Y, Liu L, Zhang MY, Sun JM, Zhang SL, Wu J (2015) Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genetics & Genomes 11(6):1–22

  • Lo EY, Stefanović S, Christensen KI, Dickinson TA (2009) Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Mol Phylogenet Evol 51:157–168

    Article  PubMed  CAS  Google Scholar 

  • Lombard, P.B., Westwood, M.N., 1987. Pear rootstocks

    Google Scholar 

  • Lu J, Wu J, Zhang S, Wu H, Zhang Y (2011) Genetic diversity and polygentic relationship among pears reveled by SSR analysis. Journal of Nanjing Agricultural University 2:009

    Google Scholar 

  • Newton AC, Allnutt TR, Gillies A, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  CAS  Google Scholar 

  • Odong TL, Jansen J, Van Eeuwijk FA, van Hintum TJ (2013) Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet 126:289–305

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pu F, Wang Y (1963) Pomology of China. Pears. Shanghai Scientific and Technical Publishers, Shanghai (in Chinese)

    Google Scholar 

  • Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347

    Article  Google Scholar 

  • Rubtsov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Nat 78:358–366

    Article  Google Scholar 

  • Schoen DJ, Brown AH (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci 90:10623–10627

    Article  PubMed  CAS  Google Scholar 

  • Shen D, Bo W, Xu F, Wu R (2014) Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient. BMC Genet 15:1

    Article  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    Article  PubMed  Google Scholar 

  • Song Y, Fan L, Chen H, Zhang M, Ma Q, Zhang S, Wu J (2014) Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Sci Hortic 167:5–16

    Article  CAS  Google Scholar 

  • Taberlet P, Fumagalli L, Wustsaucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Tautz D (1989) Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2002) Assessment of genetic relatedness among large-fruited pear cultivars native to east asia using rapd markers. Acta Horticulturae (587):139–145

  • Vargas AM, de Andrés MT, Ibáñez J (2016) Maximization of minority classes in core collections designed for association studies. Tree Genet Genomes 12

  • Vercken E, Fontaine MC, Gladieux P, Hood ME, Jonot O, Giraud T (2010) Glacial refugia in pathogens: European genetic structure of anther smut pathogens on Silene latifolia and Silene dioica. PLoS Pathog 6:e1001229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Li L, Li M, Khan MA, Li X, Chen H, Yin H, Zhang S (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of Experimental Botany 65(20):5771–5781

  • Wuyun T, Amo H, Xu J, Ma T, Uematsu C, Katayama H (2015) Population structure of and conservation strategies for wild Pyrus ussuriensis Maxim. in China. PLoS One 10:e0133686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle TB, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology centre. University of Alberta, Canada, p 10

    Google Scholar 

  • Yu (1979a) Taxonomy of the fruit tree in China (in Chinese). Beijing, China Agr Press

    Google Scholar 

  • Yu DJ (1979b) Pyrus pyrifolia. Flora Republicae Popularis Sinicae 36:365

  • Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6:e27565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang MY, Fan L, Liu QZ, Song Y, Wei SW (2014) A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Mol Biol Report 32:290-302

  • Zheng X, Cai D, Potter D, Postman J, Liu J, Teng Y (2014) Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol 80:54–65

    Article  PubMed  Google Scholar 

  • Zong Y, Sun P, Liu J, Yue X, Niu Q, Teng Y (2014) Chloroplast DNA-based genetic diversity and phylogeography of Pyrus betulaefolia (Rosaceae) in northern China. Tree Genet Genomes 10:739–749

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Foundation of China (31672111), the Earmarked Fund for China Agriculture Research System (CARS-29), the Science Foundation for Distinguished Young Scientists in Jiangsu Province (BK20150025), and The Six Talent Peaks Project in Jiangsu Province (2014-NY-025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Additional information

Communicated by D. Chagné

Data archiving statement

The authors declare that all the work described in this manuscript followed standard Tree Genetics and Genomes policy. All primers used were according to the article of Song et al. (2014) and Liu et al. 2015

Electronic supplementary material

Fig. S1

Distribution of pairwise relatedness coefficients among the P. pyrifolia individuals. rxy values among cultivars are normally distributed around a mean of zero, with a low variance between pairs of individuals. (PDF 121 kb)

Fig. S2

Modeling of number of genepools in P. pyrifolia using STRUCTURE. Ln P(D) and delta K, calculated according to Evanno et al. (2005), plotted against the number of modeled genepools (K). (JPG 170 kb)

Fig. S3

Inference of the number of clusters. Bayesian information criterion (BIC) is provided for different numbers of clusters (from 1 to 50). The chosen number of clusters (8) is crossed in black. (PDF 310 kb)

Fig. S4

Scatterplots of DAPC. Groups are shown by different colors and inertia ellipses; dots represent individual strains. (PDF 368 kb)

ESM 1

(DOCX 38.6 kb)

ESM 2

(DOCX 13.7 kb)

ESM 3

(DOCX 17.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Liu, Q., Hu, H. et al. The southwestern origin and eastward dispersal of pear (Pyrus pyrifolia) in East Asia revealed by comprehensive genetic structure analysis with SSR markers. Tree Genetics & Genomes 14, 48 (2018). https://doi.org/10.1007/s11295-018-1255-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1255-z

Keywords

Navigation