Skip to main content
Log in

Identification of QTLs controlling chilling and heat requirements for dormancy release and bud break in Japanese apricot (Prunus mume)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Bud dormancy is an important developmental stage affecting blooming date and leafing date (LD) in Japanese apricot (Prunus mume), but the genetic factors controlling the chilling requirement (CR) and heat requirement (HR) for dormancy release and bud burst time remain to be elucidated. Here, a quantitative trait locus (QTL) analysis using two F1 segregating populations was conducted to identify loci affecting these traits. The genotyping-by-sequencing technique was used to construct two high-density genetic maps, one for NKSC, a population derived from high-chill ‘Nanko’ crossed with low-chill ‘SC’, covering 660.2 cM with 408 markers, and one for NINK, a population derived from low-chill ‘Ellching’ crossed with ‘Nanko’, covering 1314.2 cM with 718 markers. We observed four traits: CR and HR for dormancy release, blooming date, and LD over several years. To identify the QTL controlling the downregulation of DORMANCY-ASSOCIATED MADS-box6 (PmDAM6) in January’s leaf buds, in which PmDAM6 could act as a dose-dependent inhibitor of bud break, its transcript levels in leaf buds were determined. All traits segregated in the analyzed seasons in both populations. For leaf bud dormancy, CR and LD were highly correlated across years and traits in the NKSC population, while HR, LD, and PmDAM6 expression were highly correlated in the NINK population. The QTL analyses localized the significant QTLs controlling leaf bud CR and HR, LD, and PmDAM6 expression in leaf buds to a region in linkage group 4, which suggests that this locus controls dormancy release, bud break, and PmDAM6’s downregulation in Japanese apricot leaf buds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 198:101–114

    Article  CAS  Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 10:e0139406. https://doi.org/10.1371/journal.pone.0139406

    Article  PubMed  PubMed Central  Google Scholar 

  • Castéde S, Campoy JA, Quero-Garcia J, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715

    Article  PubMed  Google Scholar 

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3-Genes Genomes Genet 1:171–182

    CAS  Google Scholar 

  • Chaparro JX, Werner DJ, Omalley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arùs P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis J, Siegmund D (1999) Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151:373–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Report 31:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. Hortscience 32:623–629

    Google Scholar 

  • Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3-Genes Genomes Genet 4:1681–1687

    Google Scholar 

  • Gasic K, Gonzalez DO, Thimmapuram J, Liu L, Malnoy M, Gong G, Han YP, Vodkin LO, Aldwinckle HS, Carroll NJ, Orvis KS, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Feltus FA, Korban SS (2009) Comparative analysis and functional annotation of a large expressed sequence tag collection of apple. Plant Genome 2:23–38

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habu T, Yamane H, Igarashi K, Hamada K, Yano K, Tao R (2012) 454-pyrosequencing of the transcriptome in leaf and flower buds of Japanese apricot (Prunus mume Sieb. et Zucc.) at different dormant stages. J Jpn Soc Hortic Sci 81:239–250

    Article  CAS  Google Scholar 

  • Habu T, Yamane H, Sasaki R, Yano K, Fujii H, Shimizu T, Yamamoto T, Tao R (2014) Custom microarray analysis for transcript profiling of dormant vegetative buds of Japanese apricot during prolonged chilling exposure. J Jpn Soc Hortic Sci 83:1–16

    Article  CAS  Google Scholar 

  • Hayashi K, Shimazu K, Yaegaki H, Yamaguchi M, Iketani H, Yamamoto T (2008) Genetic diversity in fruiting and flowers-ornamental Japanese apricot (Prunus mume) germplasms assessed by SSR markers. Breed Sci 58:401–410

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  Google Scholar 

  • Iwata H, Minamikawa MF, Kajiya-Kanegae H, Ishimori M, Hayashi T (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66:100–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167

    Article  PubMed  Google Scholar 

  • Kitamura Y, Takeuchi T, Yamane H, Tao R (2016) Simultaneous down-regulation of DORMANCY-ASSOCIATED MADS-box6 and SOC1 during dormancy release in Japanese apricot (Prunus mume) flower buds. J Hortic Sci Biotechnol 91:476–482

    Article  CAS  Google Scholar 

  • Kitamura Y, Yamane H, Yukimori A, Shimo H, Numaguchi K, Tao R (2017) Blooming date predictions based on Japanese apricot ‘Nanko’ flower bud responses to temperatures during dormancy. Hortscience 52:366–370

    Article  Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTL for early ripening are tightly linked to preharvest fruit drop. Breed Sci 64:240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang GA (1987) Dormancy –a new universal terminology. Hortscience 22:817–820

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson DM, Hemmat M, Weeden NF (1995) The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. J Am Soc Hortic Sci 120:532–537

    Google Scholar 

  • Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.) Genome 52(10):819–828

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012a) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. https://doi.org/10.1371/journal.pone.0032253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012b) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Article  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot (Prunus mume). Plant Physiol 157:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:499–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Siviero A, Cristofani M, Machado MA (2003) QTL mapping associated with rooting stem cuttings from Citrus sunki vs. Poncirus trifoliata hybrids. Crop Breed Appl Biotechnol 3:83–88

    Article  Google Scholar 

  • Socquet-Juglard D, Christen D, Devenes G, Gessler C, Duffy B, Patocchi A (2013) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report 31:387–397

    Article  CAS  Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotype gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhang Q, Xu Z, Yang W, Guo Y, Lu J, Pan H, Cheng T, Cai M (2013) Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.) BMC Genet 14:98

    Article  PubMed  PubMed Central  Google Scholar 

  • van Ooijen JW (2006) JoinMap 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • van Ooijen JW (2009) MapQTL 6 Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Hao R, Pan H, Cheng T, Zhang Q (2014) Selection of suitable reference genes for quantitative real-time polymerase chain reaction in Prunus mume during flowering stages and under different abiotic stress conditions. J Am Soc Hortic Sci 139:113–122

    CAS  Google Scholar 

  • Weber CA, Moore GA, Deng Z, Gmitter Jr FG (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis × Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

    CAS  Google Scholar 

  • Wu R, Tomes S, Karunairetnam S, Tustin SD, Hellens RP, Allan AC, Macknight RC, Varkonyi-Gasic E (2017) SVP-like MADS box genes control dormancy and budbreak in apple. Front Plant Sci 8:477. https://doi.org/10.3389/fpls.2017.00477

    PubMed  PubMed Central  Google Scholar 

  • Yamada M (2011) Kaju no kozatsuikushuho (In Japanese). Yokendo, Tokyo

    Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane H, Kashiwa Y, Kakehi E, Yonemori K, Mori H, Hayashi K, Iwamoto K, Tao R, Kataoka I (2006) Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiol 26:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hortic Sci 133:708–716

    Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011a) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy breaking reagent treatment. J Exp Bot 62:3481–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Sasaki R, Tao R (2011b) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic 129:844–848

    Article  CAS  Google Scholar 

  • Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P, Barba P, Takacs EM, Clark MD, Luby JJ, Manns DC, Sacks GL, Mansfield AK, Londo JP, Fennell AY, Gadoury D, Reisch BI, Cadle-Davidson LE, Sun Q (2016) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker assisted selection in grapevine. Hortic Res 3:16002. https://doi.org/10.1038/hortres.2016.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E (2015) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res 22:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genomes 10:35–51

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Edanz Group for editing a draft of this manuscript.

Funding

This work was supported by a Grant-in-Aid for Scientific Research (A) from the Japan society for Promotion of Science (JSPS KAKENHI grant number 26252005) to H.Y

Data archiving statement

All the obtained sequences from Illumina sequencing reads will be available from the NCBI/DDBJ Sequence Read Archive under the following accession numbers, DRA006645 (BioProject: PRJDB6835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayo Yamane.

Additional information

Communicated by V. Decroocq

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, Y., Habu, T., Yamane, H. et al. Identification of QTLs controlling chilling and heat requirements for dormancy release and bud break in Japanese apricot (Prunus mume). Tree Genetics & Genomes 14, 33 (2018). https://doi.org/10.1007/s11295-018-1243-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1243-3

Keywords

Navigation