Advertisement

Tree Genetics & Genomes

, 14:26 | Cite as

A major locus for resistance to Botryosphaeria dothidea in Prunus

  • Daniel Mancero-Castillo
  • Thomas G. Beckman
  • Philip F. Harmon
  • José X. Chaparro
Original Article
  • 129 Downloads
Part of the following topical collections:
  1. Disease Resistance

Abstract

Species in the fungal family Botryosphaeriaceae are significant pathogens of peach. The climatic conditions in the Southeastern USA are conducive to the development of peach fungal gummosis (PFG) with an estimated yield reduction of up to 40% in severe cases. Genotypes with resistance to this PFG were identified in interspecific crosses and segregating backcross populations generated using Kansu peach (Prunus kansuensis Rehder), almond [Prunus dulcis (Mill.) D.A. Webb], and peach [Prunus persica (L.) Batsch]. Hybrids were evaluated for four consecutive years in field conditions. Data generated was validated in different environments using clonal replicates of the hybrids. The F1 and BC1F1 segregation population data suggest a dominant allele for PFG resistance originating from almond. Segregation and mapping analysis located the PFG resistance locus on a chimeric linkage groups 6–8 near the leaf color locus. The molecular markers identified will facilitate marker-assisted selection (MAS) and introgression of this resistance trait into commercial peach germplasm.

Keywords

Peach fungal gummosis Peach Almond Resistance SSR markers 

Supplementary material

11295_2018_1241_MOESM1_ESM.docx (116 kb)
Table 1S (DOCX 116 kb)
11295_2018_1241_MOESM2_ESM.docx (65 kb)
Table 2S (DOCX 64 kb)
11295_2018_1241_MOESM3_ESM.docx (84 kb)
Table 3S (DOCX 83 kb)

References

  1. Ahimera N, Gisler S, Morgan DP, Michailides TJ (2004) Effects of single-drop impactions and natural and simulated rains on the dispersal of Botryosphaeria dothidea conidia. Phytopathology 94:1189–1197.  https://doi.org/10.1094/PHYTO.2004.94.11.1189 CrossRefPubMedGoogle Scholar
  2. Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92.  https://doi.org/10.1046/j.1439-0523.2002.00656.x CrossRefGoogle Scholar
  3. Beckman TG, Chaparro JX, Sherman WB (2012) “MP-29”, a clonal interspecific hybrid rootstock for peach. Hortscience 47:128–131Google Scholar
  4. Beckman TG, Pusey PL, Bertrand PF (2003) Impact of fungal gummosis on peach trees. Hortscience 38:1141–1143Google Scholar
  5. Beckman TG, Reilly CC (2005) Relative susceptibility of peach cultivars to fungal gummosis (Botryosphaeria dothidea). J Am Pomol Soc 59:111–116Google Scholar
  6. Beckman TG, Reilly CC, Pusey PL, Hotchkiss M (2011) Progress in the management of peach fungal gummosis (Botryosphaeria dothidea) in the southeastern US peach industry. J Am Pomol Soc 65:192–200Google Scholar
  7. Biggs A, Britton KO (1988) Presymptom histopathology of peach trees inoculated with Botryosphaeria obtusa and B. dothidea. 78:1109–1118Google Scholar
  8. Blake MA (1937) Progress in peach breeding. Proced Am Soc Hortic Sci:49–53Google Scholar
  9. Britton KO, Hendrix FF, Pusey PL et al (1990) Evaluating the reaction of peach cultivars to infection by three Botryosphaeria species. Hortscience 25:468–470Google Scholar
  10. Broman KW, Wu H, Sen S, Churchill GA (2003) R/QTL: QTL mapping in experimental crosses. Bioinforma Appl NOTE 19:889–890.  https://doi.org/10.1093/bioinformatics/btg112 CrossRefGoogle Scholar
  11. Brown IIE, Britton K (1986) Botryosphaeria disease of apple and peach in the Southeastern United States. Plant Dis 70:480–484CrossRefGoogle Scholar
  12. Carrillo-Mendoza O, Sherman WB, Chaparro JX (2010) Development of a branching index for evaluation of peach seedlings using interspecific hybrids. Hortscience 45:852–856Google Scholar
  13. Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815.  https://doi.org/10.1007/BF00221132 CrossRefPubMedGoogle Scholar
  14. Chavez DJ, Chaparro JX (2011) Identification of markers linked to seedlessness in Citrus kinokuni hort. ex Tanaka and its progeny using bulked segregation analysis. Hortscience 46:693–697Google Scholar
  15. Denman S, Crous PW, Taylor JE et al (2000) An overview of the taxonomic history of Botryosphaeria, and a re-evaluation of its anamorphs based on morphology and its rDNA phylogeny. Stud Mycol 45:129–140Google Scholar
  16. Dettori MT, Micali S, Giovinazzi J, Scalabrin S, Verde I, Cipriani G (2015) Mining microsatellites in the peach genome: development of new long-core SSR markers for genetic analyses in five Prunus species. Spring 4:337.  https://doi.org/10.1186/s40064-015-1098-0 CrossRefGoogle Scholar
  17. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896.  https://doi.org/10.1073/pnas.0307937101 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Doyle J (1991) DNA protocols for plants. Mol Tech Taxon:283–293.  https://doi.org/10.1007/978-3-642-83962-7_18
  19. Fawcett HS, Burger OF (1911) A gum-inducing diplodia of peach and orange. Mycologia 3:151.  https://doi.org/10.2307/3753305 CrossRefGoogle Scholar
  20. Gradziel TM, Martinez-Gomez P, Dicenta F, Kester DE (2001) The utilization of related prunus species for almond variety improvementGoogle Scholar
  21. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171(3):1305–1309CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314Google Scholar
  23. Jacobs KA, Rehner SA (1998) Comparison of cultural and morphological characters and its sequences in anamorphs of Botryosphaeria and related taxa. Mycologia 90:601.  https://doi.org/10.2307/3761219 CrossRefGoogle Scholar
  24. Jáuregui B, de Vicente MC, Messeguer R (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176CrossRefGoogle Scholar
  25. Joobeur T, Viruel M, de VM et al (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Overview featuremaps features properties overview. Theor Appl Genet (7):1034–1041Google Scholar
  26. Kosambi DD (1944) The estimation of map distances from recombination. Ann Eugenics 12:172–175.  https://doi.org/10.1111/j.1469-1809.1943.tb02321.x CrossRefGoogle Scholar
  27. Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”. Tree Genet Genomes 7:1057–1068.  https://doi.org/10.1007/s11295-011-0394-2 CrossRefGoogle Scholar
  28. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.  https://doi.org/10.1016/0888-7543(87)90010-3 CrossRefPubMedGoogle Scholar
  29. Li Z, Zhu W, Fan YC, Ye JL, Li GH (2014) Effects of pre- and post-treatment with ethephon on gum formation of peach gummosis caused by Lasiodiplodia theobromae. Plant Pathol 63:1306–1315.  https://doi.org/10.1111/ppa.12214 CrossRefGoogle Scholar
  30. Okie WR, Pusey PL (1996) USDA peach breeding in Georgia: current status and breeding for resistance to Botryosphaeria. Acta Hortic:151–158.  https://doi.org/10.17660/ActaHortic.1996.374.19
  31. Phillips AJL, Crous PW, Alves A (2007) Diplodia seriata, the anamorph of Botryosphaeria obtusa. Fungal Divers 25:141–155Google Scholar
  32. Polashock JJ, Road LO, Kramer M et al (2006) Resistance of blueberry cultivars to Botryosphaeria stem blight and Phomopsis twig blight. Hortscience 41:1457–1461Google Scholar
  33. Punithalingam E (1976) Botryodiplodia theobromae. C Descr Pathog Fungi Bact 519:1–2Google Scholar
  34. Pusey P (1989) Influence of water stress on susceptibility of nonwounded peach bark to Botryosphaeria dothidea. Plant Dis 73:1000–1003CrossRefGoogle Scholar
  35. Pusey P, Bertrand P (1993) Seasonal infection of nonwounded peach bark by Botryosphaeria dothidea. Phytopathology 83:825–829CrossRefGoogle Scholar
  36. Pusey PL, Kitajima H, Wu Y (1995) “Fungal gummosis”Google Scholar
  37. Reilly WD, Okie WR (1982) Distribution in the southeastern United States of peach tree fungal gummosis by Botryosphaeria dothidea. Plant Dis 66:158–161CrossRefGoogle Scholar
  38. Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ (2004) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96:83–101.  https://doi.org/10.2307/3761991 CrossRefPubMedGoogle Scholar
  39. Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106.  https://doi.org/10.1016/j.fbr.2007.06.002 CrossRefGoogle Scholar
  40. Wang F, Zhao L, Li G, Huang J, Hsiang T (2011) Identification and characterization of Botryosphaeria spp. causing gummosis of peach trees in Hubei Province, Central China. Plant Dis 95:1378–1384.  https://doi.org/10.1094/pdis-12-10-0893 CrossRefGoogle Scholar
  41. Weaver DJ (1974) A gummosis disease of peach trees caused by Botryosphaeria dothidea. Phytopathology 64:1429–1432.  https://doi.org/10.1094/Phyto-64-1429 CrossRefGoogle Scholar
  42. Weaver DJ (1979) Role of conidia of Botryosphaeria dothidea in the natural spread of peach tree gummosis. Phytopathology 69:330–340CrossRefGoogle Scholar
  43. Wright AF, Harmon PF (2010) Identification of species in the Botryosphaeriaceae family causing stem blight on southern highbush blueberry in Florida. Plant Dis 94:966–971.  https://doi.org/10.1094/PDIS-94-8-0966 CrossRefGoogle Scholar
  44. Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japan Soc Hortic Sci 74(3):204–213CrossRefGoogle Scholar
  45. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Mancero-Castillo
    • 1
  • Thomas G. Beckman
    • 2
  • Philip F. Harmon
    • 3
  • José X. Chaparro
    • 1
  1. 1.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.USDA-ARS Southeastern Fruit and Tree Nut Research LaboratoryByronUSA
  3. 3.Department of Plant PathologyUniversity of FloridaGainesvilleUSA

Personalised recommendations