Tree Genetics & Genomes

, 14:18 | Cite as

Anthropogenic dispersion of selected germplasm creates a geographic mosaic of contrasting maternal lineages in Crescentia cujete from Mesoamerica

  • Xitlali Aguirre-Dugua
  • Jesús Llanderal-Mendoza
  • Antonio González-Rodríguez
  • Luis E. Eguiarte
  • Alejandro Casas
Original Article
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

The modification of the genetic/phenotypic composition of plant populations through artificial selection occurs both through time and space. We analyzed the role of human dispersal on the geographic distribution of maternal lineages of Crescentia cujete in Mesoamerica. We sampled 28 homegarden (224 individuals) and 12 wild populations (159 individuals). Semi-structured interviews provided information on the origin of cultivated trees. Six chloroplast microsatellites allowed for the identification of 21 haplotypes, four of them exclusively in 83% of homegarden trees. Wild haplotypes from local C. cujete and Crescentia alata were found at low frequencies (17%) under cultivation. Cultivated and wild haplotypes constituted two different haplogroups. Accordingly, barriers to seed dispersal were detected among neighboring cultivated and wild populations. Recorded events of human dispersal of cuttings and seeds attaining up to > 200 km agreed with homegardens’ lower diversity (Nei’s h = 0.55, dropping to 0.32 when excluding wild haplotypes). Wild populations displayed high diversity (h = 0.71) and isolation by distance, in agreement with physiographic provinces. Our results support the native status of wild C. cujete and a Pre-Columbian introduction of cultivated lineages that generated a novel genetic mosaic superimposed on native maternal lineages. The results reveal the active role of farmers in maintaining the identity of cultivated lineages through time, while chloroplast capture from local congeners has increased the diversity of maternal lineages under cultivation. Additional data are needed on the origins of cultivated lineages, but our results contribute new insights into tree domestication in this center of crop diversity.

Keywords

Bignoniaceae Crescentia cujete Tree domestication Homegarden Mesoamerica Perennial 

Notes

Acknowledgements

The authors thank Edgar Pérez Negrón, Ignacio Torres García, and Fernando Ortiz for their help during collection trips. Santiago Ramírez Barahona reconstructed the paleodistribution of wild populations during the Last Glacial Maximum. Jacqueline Pérez Camacho provided the C. cujete sample from Cuba and Natalia Escobedo Kenefic the C. alata sample from Guatemala. Jeannine Cavender-Bares and Marileth de los Angeles Briceño contributed with samples from Costa Rica. Victor Rocha Ramírez provided valuable help during lab work. The authors thank David Gernandt for permitting access to Crescentia specimens deposited in the Herbario Nacional MEXU and for revising the English version of the manuscript. This work was supported by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica of Universidad Nacional Autónoma de México (IN205111-3, IN209214) and Consejo Nacional de Ciencia y Tecnología (CB-2008-01-103551, CB-2013-01-221800). The paper was written during a sabbatical leave of LEE to the University of Minnesota in the Peter Tiffin laboratory, with support by a scholarship from Programa de Apoyos para la Superación del Personal Académico, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México. Three anonymous reviewers provided insightful comments that greatly improved the manuscript.

Data archiving statement

Haplotype distribution per population and microsatellite data leading to haplotype definition are available in Online Resource 7.

Supplementary material

11295_2018_1230_MOESM1_ESM.doc (98 kb)
ESM 1 (DOC 98 kb)
11295_2018_1230_MOESM2_ESM.doc (34 kb)
ESM 2 (DOC 33 kb)
11295_2018_1230_MOESM3_ESM.doc (34 kb)
ESM 3 (DOC 34 kb)
11295_2018_1230_MOESM4_ESM.doc (162 kb)
ESM 4 (DOC 162 kb)
11295_2018_1230_MOESM5_ESM.doc (64 kb)
ESM 5 (DOC 63 kb)
11295_2018_1230_MOESM6_ESM.doc (134 kb)
ESM 6 (DOC 134 kb)
11295_2018_1230_MOESM7_ESM.docx (37 kb)
ESM 7 (DOCX 36 kb)

References

  1. Adin A, Weber JC, Sotelo Montes C et al (2004) Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon-implications for genetic resource management. Theor Appl Genet 108(8):1564–1573.  https://doi.org/10.1007/s00122-003-1581-9 PubMedCrossRefGoogle Scholar
  2. Aguirre-Dugua X (2015) Filogeografía y procesos de domesticación de Crescentia alata y Crescentia cujete (Bignoniaceae) en México. Ph.D. Dissertation. Universidad Nacional Autónoma de MéxicoGoogle Scholar
  3. Aguirre-Dugua X, Eguiarte LE, González-Rodríguez A, Casas A (2012) Round and large: morphological and genetic consequences of artificial selection on the gourd tree Crescentia cujete by the Maya of the Yucatan Peninsula, Mexico. Ann Bot 109(7):1297–1306.  https://doi.org/10.1093/aob/mcs068 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aguirre-Dugua X, Pérez-Negrón E, Casas A (2013) Phenotypic differentiation between wild and domesticated varieties of Crescentia cujete L. and culturally relevant uses of their fruits as bowls in the Yucatan Peninsula, Mexico. J Ethnobiol Ethnomed 9(1):76.  https://doi.org/10.1186/1746-4269-9-76 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Akinnifesi FK, Leakey RRB, Ajayi OC et al (eds) (2008) Indigenous fruit trees in the tropics. CAB International, World Agroforestry Centre, WallingfordGoogle Scholar
  6. Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci U S A 105(37):13982–13986.  https://doi.org/10.1073/pnas.0803780105 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arango-Ulloa J, Bohorquez A, Duque MC, Maass BL (2009) Diversity of the calabash tree (Crescentia cujete L.) in Colombia. Agrofor Syst 76(3):543–553.  https://doi.org/10.1007/s10457-009-9207-0 CrossRefGoogle Scholar
  8. Arango LMA (1995) Aporte léxico de las lenguas indigenas al español de América. Puvill Libros, BarcelonaGoogle Scholar
  9. Arias D, Peñaloza-Ramírez JM, Dorado O et al (2010) Phylogeographic patterns and possible incipient domestication of Jacaratia mexicana A.DC. (Caricaceae) in Mexico. Genet Resour Crop Evol 57(8):1227–1238.  https://doi.org/10.1007/s10722-010-9569-1 CrossRefGoogle Scholar
  10. Avendaño-Gómez A, Lira-Saade R, Madrigal-Calle B et al (2015) Manejo y síndromes de domesticación del capulín (Prunus serotina Ehrh ssp. capuli (Cav.) McVaughn) en comunidades del estado de Tlaxcala. Agrociencia 49:189–204Google Scholar
  11. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  12. Bass J (2004) Incidental agroforestry in Honduras: the jicaro tree (Crescentia spp.) and pasture land use. J Lat Am Geogr 3(1):67–80.  https://doi.org/10.1353/lag.2005.0002 CrossRefGoogle Scholar
  13. Besnard G, Rubio de Casas R (2015) Single vs multiple independent olive domestications: the jury is (still) out. New Phytol 209(2):466–470.  https://doi.org/10.1111/nph.13518 PubMedCrossRefGoogle Scholar
  14. Birnbaum K, DeSalle R, Peters C, Benfey PN (2003) Integrating gene flow, crop biology, and farm management in on-farm conservation of avocado (Persea americana, Lauraceae). Am J Bot 90(11):1619–1627.  https://doi.org/10.3732/ajb.90.11.1619 PubMedCrossRefGoogle Scholar
  15. Cajas-Giron YS, Sinclair FL (2001) Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean region of Colombia. Agrofor Syst 53(2):215–225.  https://doi.org/10.1023/A:1013384706085 CrossRefGoogle Scholar
  16. Carrillo-Bastos A, Islebe G a, Torrescano-Valle N, González NE (2010) Holocene vegetation and climate history of central Quintana Roo, Yucatán Península, Mexico. Rev Palaeobot Palynol 160(3-4):189–196.  https://doi.org/10.1016/j.revpalbo.2010.02.013 CrossRefGoogle Scholar
  17. Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot 100(5):1101–1115.  https://doi.org/10.1093/aob/mcm126 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Challenger A, Dirzo R (2009) Factores de cambio y estado de la biodiversidad. In: Capital Natural de México, Vol. II: Estado de conservación y tendencias de cambio. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico, DF, pp 37–73Google Scholar
  19. Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol Phylogenet Evol 59:523–537.  https://doi.org/10.1016/j.ympev.2011.01.020 PubMedCrossRefGoogle Scholar
  20. Chávez-Pesqueira M, Núñez-Farfán J (2016) Genetic diversity and structure of wild populations of Carica papaya in Northern Mesoamerica inferred by nuclear microsatellites and chloroplast markers. Ann Bot 118(7):1293–1306.  https://doi.org/10.1093/aob/mcw183 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cornille A, Gladieux P, Smulders MJM et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703.  https://doi.org/10.1371/journal.pgen.1002703 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Correa-Metrio A, Bush MB, Cabrera KR, Sully S, Brenner M, Hodell DA, Escobar J, Guilderson T (2012) Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quat Sci Rev 38:63–75.  https://doi.org/10.1016/j.quascirev.2012.01.025 CrossRefGoogle Scholar
  23. Cutler HC, Whitaker TW (1961) History and distribution of the cultivated cucurbits in the Americas. Am Antiq 26(04):469–485.  https://doi.org/10.2307/278735 CrossRefGoogle Scholar
  24. De Lucca Dröxkler MF (2004) Plantas medicinales del trópico boliviano. Programa de Apoyo a la Estrategia de Desarrollo Alternativo en el Chapare (PRAEDAC), La PazGoogle Scholar
  25. Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution (N Y) 53:732–744Google Scholar
  26. Ducke A (1946) Plantas de cultura precolombiana na Amazônia brasileira. Notas sôbre as espécies ou formas espontâneas que supostamente lhes teriam dado origem. Bol Tec do Inst Agronômico do Norte 8:3–24Google Scholar
  27. Dzul-Tejero F, Coello-Coello J, Martínez-Castillo J (2014) Wild to crop introgression and genetic diversity in Lima bean (Phaseolus lunatus L.) in traditional Mayan milpas from Mexico. Conserv Genet 15(6):1315–1328.  https://doi.org/10.1007/s10592-014-0619-7 CrossRefGoogle Scholar
  28. Ekué MRM, Gailing O, Vornam B, Finkeldey R (2011) Assessment of the domestication state of ackee (Blighia sapida K.D. Koenig) in Benin based on AFLP and microsatellite markers. Conserv Genet 12(2):475–489.  https://doi.org/10.1007/s10592-010-0155-z CrossRefGoogle Scholar
  29. Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T (2001) Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol Ecol 10(8):1895–1907.  https://doi.org/10.1046/j.0962-1083.2001.01331.x PubMedCrossRefGoogle Scholar
  30. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13(4):853–864.  https://doi.org/10.1046/j.1365-294X.2003.02004.x PubMedCrossRefGoogle Scholar
  31. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  32. Ford A, Nigh R (2009) Origins of the Maya forest garden : Maya resource management. J Ethnobiol 29(2):213–236.  https://doi.org/10.2993/0278-0771-29.2.213 CrossRefGoogle Scholar
  33. Galluzzi G, Dufour D, Thomas E et al (2015) An integrated hypothesis on the domestication of Bactris gasipaes. PLoS One 10(12):1–24.  https://doi.org/10.1371/journal.pone.0144644 CrossRefGoogle Scholar
  34. García E, CONABIO (1998) Climas (clasificación de Koppen, modificado por García). Escala 1:1000000Google Scholar
  35. Gaut BS, Díez CM, Morrell PL (2015) Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet 31(12):709–719.  https://doi.org/10.1016/j.tig.2015.10.002 PubMedCrossRefGoogle Scholar
  36. Gentry AH (1980) Bignoniaceae. Part I. Flora Neotrop Monogr 25:82–96Google Scholar
  37. Gentry AH (1974a) Coevolutionary patterns in Central American Bignoniaceae. Ann Missouri Bot Gard 61(3):728–759.  https://doi.org/10.2307/2395026 CrossRefGoogle Scholar
  38. Gentry AH (1974b) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6(1):64–68.  https://doi.org/10.2307/2989698 CrossRefGoogle Scholar
  39. Gentry AH (1982) Bignoniaceae. Flora de Veracruz 24:1–222Google Scholar
  40. Gepts P (2014) The contribution of genetic and genomic approaches to plant domestication studies. Curr Opin Plant Biol 18:51–59.  https://doi.org/10.1016/j.pbi.2014.02.001 PubMedCrossRefGoogle Scholar
  41. Graefe S, Dufour D, van Zonneveld M et al (2013) Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodivers Conserv 22(2):269–300.  https://doi.org/10.1007/s10531-012-0402-3 CrossRefGoogle Scholar
  42. Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15(9):529–537.  https://doi.org/10.1016/j.tplants.2010.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gross BL, Zhao Z (2014) Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci U S A 111(17):6190–6197.  https://doi.org/10.1073/pnas.1308942110 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guillén S, Casas A, Terrazas T et al (2013) Differential survival and growth of wild and cultivated seedlings of columnar cacti: consequences of domestication. Am J Bot 100:2364–2379PubMedCrossRefGoogle Scholar
  45. Gunn BF, Baudouin L, Olsen KM (2011) Independent origins of cultivated coconut (Cocos nucifera L.) in the Old World tropics. PLoS One 6(6):e21143.  https://doi.org/10.1371/journal.pone.0021143 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Harlan JR (1971) Origins: agricultural centers and noncenters. Science 174(80):468–474PubMedCrossRefGoogle Scholar
  47. Heiser CBJ (1965) Cultivated plants and cultural diffusion in Nuclear America. Am Anthropol 67:930–949CrossRefGoogle Scholar
  48. Heiser CBJ (1993) The gourd book. The University of Oklahoma Press, NormanGoogle Scholar
  49. Hernández Xolocotzi E (1993) Aspects of plant domestication in Mexico: a personal view. In: Ramamoorthy TP, Bye RA, Lot A, Fa J (eds) Biological diversity of Mexico: origins and distribution. Oxford University Press, New York, pp 733–753Google Scholar
  50. Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375(6530):391–394.  https://doi.org/10.1038/375391a0 CrossRefGoogle Scholar
  51. Howe HF (1985) Gomphothere fruits: a critique. Am Nat 125(6):853–865.  https://doi.org/10.1086/284383 CrossRefGoogle Scholar
  52. Hufford MB, Lubinksy P, Pyhäjärvi T et al (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9(5):e1003477.  https://doi.org/10.1371/journal.pgen.1003477 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hughes CE, Govindarajulu R, Robertson A et al (2007) Serendipitous backyard hybridization and the origin of crops. Proc Natl Acad Sci U S A 104(36):14389–14394.  https://doi.org/10.1073/pnas.0702193104 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Imazio S, Labra M, Grassi F et al (2006) Chloroplast microsatellites to investigate the origin of grapevine. Genet Resour Crop Evol 53(5):1003–1011.  https://doi.org/10.1007/s10722-004-6896-0 CrossRefGoogle Scholar
  55. INEGI - Instituto Nacional de Estadística Geografía e Informática (2002) Localidades de la República Mexicana, 2000. Obtenido de Principales Resultados por Localidad. XII Censo de Población y Vivienda 2000. Editado por Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)Google Scholar
  56. INEGI - Instituto Nacional de Estadística Geografía e Informática (1991) Datos Básicos de la Geografía de México, 2nd edn. Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  57. Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP et al (2008) Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Mol Ecol 17(10):2476–2490.  https://doi.org/10.1111/j.1365-294X.2008.03762.x PubMedCrossRefGoogle Scholar
  58. Kaniewski D, Van Campo E, Boiy T et al (2012) Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol Rev Camb Philos Soc 87(4):885–899.  https://doi.org/10.1111/j.1469-185X.2012.00229.x PubMedCrossRefGoogle Scholar
  59. Kellman M (1984) Synergistic relationship between fire and low soil fertility in Neotropical savannas: a hypothesis. Biotropica 16(2):158–160.  https://doi.org/10.2307/2387850 CrossRefGoogle Scholar
  60. Kennedy J (2012) Agricultural systems in the tropical forest: a critique framed by tree crops of Papua New Guinea. Quat Int 249:140–150.  https://doi.org/10.1016/j.quaint.2011.06.020 CrossRefGoogle Scholar
  61. Kistler L, Montenegro A, Smith BD et al (2014) Transoceanic drift and the domestication of African bottle gourds in the Americas. Proc Natl Acad Sci U S A 111(8):1–5.  https://doi.org/10.1073/pnas.1318678111 2937CrossRefGoogle Scholar
  62. Leyden BW (2002) Pollen evidence for climatic variability and cultural disturbance in the Maya lowlands. Anc Mesoamerica 13(1):85–101.  https://doi.org/10.1017/S0956536102131099 CrossRefGoogle Scholar
  63. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  64. Markgraf V (1989) Palaeoclimates in Central and South America since 18,000 BP based on pollen and lake-level records. Quat Sci Rev 8(1):1–24.  https://doi.org/10.1016/0277-3791(89)90018-8 CrossRefGoogle Scholar
  65. Martin GJ (2004) Ethnobotany: a methods manual. Earthscan, LondonGoogle Scholar
  66. McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186(2):318–332.  https://doi.org/10.1111/j.1469-8137.2010.03210.x PubMedCrossRefGoogle Scholar
  67. Medina González EI (1996) Jícaras y guajes prehispánicos procedentes de contextos arqueológicos húmedos. Bachelor Dissertation, Escuela Nacional de Conservación, Restauración y Museografía “Manuel del Castillo Negrete” INAH SEPGoogle Scholar
  68. Mejías HA (1980) Préstamos de lenguas indígenas en el español del siglo XVII. Instituto de Investigaciones Filológicas, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  69. Meulenberg IRMM (2011) Calabashes and bottle gourds from Suriname: a comparative research between Maroons and Amerindians, with a case-study in Konomerume, a Kari’na village. Master dissertation, University of LeidenGoogle Scholar
  70. Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196(1):29–48.  https://doi.org/10.1111/j.1469-8137.2012.04253.x PubMedCrossRefGoogle Scholar
  71. Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14(12):840–852.  https://doi.org/10.1038/nrg3605 PubMedCrossRefGoogle Scholar
  72. Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414.  https://doi.org/10.3732/ajb.1000522 PubMedCrossRefGoogle Scholar
  73. Miller AJ, Knouft JH (2006) GIS-based characterization of the geographic distributions of wild and cultivated populations of the mesoamerican fruit tree Spondias purpurea (Anacardiaceae). Am J Bot 93(12):1757–1767.  https://doi.org/10.3732/ajb.93.12.1757 PubMedCrossRefGoogle Scholar
  74. Miller AJ, Schaal BA (2006) Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol Ecol 15(6):1467–1480.  https://doi.org/10.1111/j.1365-294X.2006.02834.x PubMedCrossRefGoogle Scholar
  75. Miller AJ, Schaal BA (2005) Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea. Proc Natl Acad Sci U S A 102(36):12801–12806.  https://doi.org/10.1073/pnas.0505447102 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mirambell L (1994) Los primeros pobladores del actual territorio mexicano. In: Manzanilla L, López Luján L (eds) Historia Antigua de México Vol. I. Instituto Nacional de Antropologia e Historia. Universidad Nacional Autónoma de México. Editorial Porrúa, México, pp 177–208Google Scholar
  77. Miranda F (1978) Vegetación de la Península Yucateca: rasgos fisiográficos, la vegetación. Colegio de Postgraduados, ChapingoGoogle Scholar
  78. Miranda F, Hernández Xolocotzi E (1963) Los tipos de vegetación de México y su clasificación. Boletín Soc Botánica México 28:29–178Google Scholar
  79. Montes-Hernández S, Merrick LC, Eguiarte LE (2005) Maintenance of squash (Cucurbita spp.) landrace diversity by farmers’ activities in Mexico. Genet Resour Crop Evol 52(6):697–707.  https://doi.org/10.1007/s10722-003-6018-4 CrossRefGoogle Scholar
  80. Montoya E, Rull V, Stansell ND et al (2011) Forest–savanna–morichal dynamics in relation to fire and human occupation in the southern Gran Sabana (SE Venezuela) during the last millennia. Quat Res 76(03):335–344.  https://doi.org/10.1016/j.yqres.2011.06.014 CrossRefGoogle Scholar
  81. Moreira PA, Aguirre-Dugua X, Mariac C et al (2017a) Diversity of treegourd (Crescentia cujete) suggests introduction and prehistoric dispersal routes into Amazonia. Front Ecol Evol 5:1–13.  https://doi.org/10.3389/fevo.2017.00150 CrossRefGoogle Scholar
  82. Moreira PA, Mariac C, Zekraoui L et al (2017b) Human management and hybridization shape treegourd fruits in the Brazilian Amazon Basin. Evol Appl 10(6):1–13.  https://doi.org/10.1111/eva.12474 Google Scholar
  83. Moreno-Calles A, Casas A, Blancas JJ et al (2010) Agroforestry systems and biodiversity conservation in arid zones: the case of the Tehuacán Valley, Central México. Agrofor Syst 80(3):315–331.  https://doi.org/10.1007/s10457-010-9349-0 CrossRefGoogle Scholar
  84. Morton JF (1968) The calabash (Crescentia cujete) in folk medicine. Econ Bot 22(3):273–280.  https://doi.org/10.1007/BF02861961 CrossRefGoogle Scholar
  85. Motamayor JC, Risterucci A-M, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity (Edinb) 89(5):380–386.  https://doi.org/10.1038/sj.hdy.6800156 PubMedCrossRefGoogle Scholar
  86. Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.) Mol Ecol 14(2):549–561.  https://doi.org/10.1111/j.1365-294X.2004.02418.x PubMedCrossRefGoogle Scholar
  87. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A 108(9):3530–3535.  https://doi.org/10.1073/pnas.1009363108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1009363108 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  89. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273PubMedPubMedCentralCrossRefGoogle Scholar
  90. Newton C, Lorre C, Sauvage C et al (2012) On the origins and spread of Olea europaea L. (olive) domestication: evidence for shape variation of olive stones at Ugarit, Late Bronze Age, Syria—a window on the Mediterranean Basin and on the westward diffusion of olive varieties. Veg Hist Archaeobot 23:567–575CrossRefGoogle Scholar
  91. Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Am J Bot 96(9):1731–1743.  https://doi.org/10.3732/ajb.0900004 PubMedCrossRefGoogle Scholar
  92. Ortíz F, Stoner KE, Pérez-Negrón E, Casas A (2010) Pollination biology of Myrtillocactus schenckii (Cactaceae) in wild and managed populations of the Tehuacán Valley, México. J Arid Environ 74(8):897–904.  https://doi.org/10.1016/j.jaridenv.2010.01.009 CrossRefGoogle Scholar
  93. Özkan H, Willcox G, Graner A et al (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58(1):11–53.  https://doi.org/10.1007/s10722-010-9581-5 CrossRefGoogle Scholar
  94. Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106(2):239–250.  https://doi.org/10.1007/s00122-002-1085-z PubMedCrossRefGoogle Scholar
  95. Parra F, Blancas JJ, Casas A (2012) Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow. J Ethnobiol Ethnomed 8(1):32.  https://doi.org/10.1186/1746-4269-8-32 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Patten MA, Smith-Patten BD (2008) Biogeographical boundaries and Monmonier’s algorithm: a case study in the northern Neotropics. J Biogeogr 35(3):407–416.  https://doi.org/10.1111/j.1365-2699.2007.01831.x CrossRefGoogle Scholar
  97. Pennington TD, Sarukhán J (1998) Árboles tropicales de México, 2nd edn. Universidad Nacional Autónoma de México, Fondo de Cultura Económica, MéxicoGoogle Scholar
  98. Pérez-Cortez S, Reyna-Hurtado R (2008) La dieta de los pecaríes (Pecari tajacu y Tayassu pecari) en la región de Calakmul, Campeche, México. Rev Mex Mastozoología 12:17–42Google Scholar
  99. Pérez-García EA, Meave JA, Cevallos-Ferriz SRS (2012) Flora and vegetation of the seasonally dry tropics in Mexico: origin and biogeographical implications. Acta Bot Mex 100:149–193CrossRefGoogle Scholar
  100. Petersen JJ, Parker IM, Potter D (2014) Domestication of the neotropical tree Chrysophyllum cainito from a geographically limited yet genetically diverse gene pool in Panama. Ecol Evol 4(5):539–553.  https://doi.org/10.1002/ece3.948 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Petit RJ, Duminil J, Fineschi S et al (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701PubMedCrossRefGoogle Scholar
  102. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37(1):187–214.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110215 CrossRefGoogle Scholar
  103. Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution (N Y) 56(9):1776–1788.  https://doi.org/10.1111/j.0014-3820.2002.tb00191.x Google Scholar
  104. Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100(5):925–940.  https://doi.org/10.1093/aob/mcm193 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Piperno DR (2006) Quaternary environmental history and agricultural impact on vegetation in Central America. Ann Missouri Bot Gard 93(2):274–296.Google Scholar
  106. Piperno DR, Pearsall DM (1998) The late Pleistocene and early Holocene Neotropical world. In: The origins of agriculture in the lowland Neotropics. Academic Press, San Diego, pp 90–107Google Scholar
  107. Polzin T, Vahdati Daneshmand S (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31(1):12–20.  https://doi.org/10.1016/S0167-6377(02)00185-2 CrossRefGoogle Scholar
  108. Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity—I. Haploid locus. Theor Appl Genet 90(3-4):462–470.  https://doi.org/10.1007/BF00221991 PubMedCrossRefGoogle Scholar
  109. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144(3):1237–1245PubMedPubMedCentralGoogle Scholar
  110. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(7231):843–848.  https://doi.org/10.1038/nature07895 PubMedCrossRefGoogle Scholar
  111. Riahi L, Laucou V, Le Cunff L et al (2012) Highly polymorphic nSSR markers: a useful tool to assess origin of North African cultivars and to provide additional proofs of secondary grapevine domestication events. Sci Hortic (Amsterdam) 141:53–60.  https://doi.org/10.1016/j.scienta.2012.04.023 CrossRefGoogle Scholar
  112. Rios M, Koziol MJ, Borgtoft Pedersen H, Granda G (eds) (2007) Useful plants of Ecuador: applications, challenges, and perspectives. Abya-Yala, QuitoGoogle Scholar
  113. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Bol Evol 9:552–569Google Scholar
  114. Rzedowski J (1978) Vegetación de México. Limusa, MexicoGoogle Scholar
  115. Saisho D, Purugganan MD (2007) Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177(3):1765–1776.  https://doi.org/10.1534/genetics.107.079491 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152(3):1079–1089PubMedPubMedCentralGoogle Scholar
  117. Standley PC (1926) Trees and shrubs of Mexico. Bignoniaceae Contrib to US Natl Herb 23:1313–1721Google Scholar
  118. Terral J-F, Newton C, Ivorra S et al (2012) Insights into the historical biogeography of the date palm (Phoenix dactylifera L.) using geometric morphometry of modern and ancient seeds. J Biogeogr 39(5):929–941.  https://doi.org/10.1111/j.1365-2699.2011.02649.x CrossRefGoogle Scholar
  119. Vavilov NI (1926) Centers of origin of cultivated plants. In: Dorofeyev VF (ed) Origin and geography of cultivated plants. Cambridge University Press, pp 22–135Google Scholar
  120. Verdú M (2002) Age at maturity and diversification in woody angiosperms. Evolution (N Y) 56:1352–1361Google Scholar
  121. Weinstein E (2007) Cosmic gourds: cucurbit and Crescentia effigy pottery of coastal Ecuador. Econ Bot 61(4):315–327.Google Scholar
  122. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42(1):9–19.  https://doi.org/10.1139/g98-104 PubMedCrossRefGoogle Scholar
  123. Wiehle M, Prinz K, Kehlenbeck K et al (2014) The role of homegardens and forest ecosystems for domestication and conservation of Ziziphus spina-christi (L.) Willd. in the Nuba Mountains, Sudan. Genet Resour Crop Evol 61(8):1491–1506.  https://doi.org/10.1007/s10722-014-0124-3 CrossRefGoogle Scholar
  124. Wiersum KF (1997) From natural forest to tree crops, co-domestication of forests and tree species, an overview. Netherlands J Agric Sci 45:425–438Google Scholar
  125. Worthington M, Soleri D, Aragón-Cuevas F, Gepts P (2012) Genetic composition and spatial distribution of farmer-managed bean plantings: an example from a village in Oaxaca, Mexico. Crop Sci 52(4):1721.  https://doi.org/10.2135/cropsci2011.09.0518 CrossRefGoogle Scholar
  126. Zehdi-Azouzi S, Cherif E, Moussouni S et al (2015) Genetic structure of the date palm (Phoenix dactylifera) in the Old World reveals a strong differentiation between eastern and western populations. Ann Bot 116(1):101–112.  https://doi.org/10.1093/aob/mcv068 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187(4174):319–327.  https://doi.org/10.1126/science.187.4174.319 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México, Campus MoreliaMoreliaMexico
  2. 2.Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaMexico CityMexico
  3. 3.Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de México, Campus MoreliaMoreliaMexico
  4. 4.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaMexico CityMexico

Personalised recommendations