Skip to main content
Log in

Rapidly evolving sex-specific sequences in Calamus travancoricus Bedd. ex. Becc. and Calamus nagbettai R.R.Fernald & Dey

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Gene sequences mediating sexual reproduction are more divergent within and between closely related species. Microsatellite or simple sequence repeat (SSR) markers are valuable molecular tools for analysis of genetic variability, phylogeny, and also for identifying sex at seedling stage in dioecious plant species. Calamus travancoricus Bedd. ex. Becc. and Calamus nagbettai R.R.Fernald & Dey are economically important rattan species. The dioecious nature of the Calamus spp. limits its breeding and cultivation. The sex of rattans can only be identified after attaining reproductive maturity which ranges from 5 to 15 years. A study was carried out in this background and 9 putative sex-specific PCR products were identified as sex markers for C. travancoricus and C. nagbettai and sequenced by Sanger method. The sequence homology search revealed occurrence of identical sequences in many plant species across different families indicating the conserved nature of the sequences. However, these sequences were not present in opposite sex in the studied species, indicating divergent evolution favoring sex determination. Annotation of these sequences revealed that most of these are mediating sexual reproduction by and large. An adequate sex ratio is to be maintained for these dioecious palms in natural habitat for producing offsprings having equal gene complements for continual evolution and sustainable utilization. Developing scientific management strategies and improved utilization of canes could help to generate employment locally and thus contribute to the socioeconomics sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baratakke RC, Patil CG (2009) Karyomorphological investigations in dioecious climber Momordica dioica Roxb. J Cytol Genet 11:91–96

    Google Scholar 

  • Basu SK (1992) Rattans (Canes) in India. A monographic revision. Rattan Information Centre, Kepong, Kuala Lumpur

  • Belcher B, Rujehan NI, Achdiawan R (2004) Rattan, rubber, or oil palm: cultural and financial considerations for farmers in Kalimantan. Econ Bot 58, Supple: S77–S87, sp1

  • Bhowmick BK, Nanda S, Nayak S, Jha S, Joshi RK (2014) An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L). Voigt Sci Hort 176:85–90. https://doi.org/10.1016/j.scienta.2014.06.041

    Article  CAS  Google Scholar 

  • Charlesworth D (1993) Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am Nat 141(3):481–490. https://doi.org/10.1086/285485

    Article  Google Scholar 

  • Charlesworth D, Guttman DS (1999) The evolution of dioecy and plant sex chromosome systems. In: Ainsworth CC (ed) Sex determination in plants. BIOS ScientiWc Publishers, Oxford, pp 25–49

    Google Scholar 

  • Cheng YJ, Meng HJ, Guo WW, Deng XX (2006) Universal chloroplast primer pairs for simple sequence repeat analysis in diverse genera of fruit crops. J Hortic Sci Biotechnol 81(1):132–138. https://doi.org/10.1080/14620316.2006.11512039

    Article  Google Scholar 

  • Choong CY, Wickneswari R (2016) Sexing in rattans. Malays Appl Biol 45:1–10

    Google Scholar 

  • Danilova TV, Karlov GI (2006) Application of inter simple sequence repeat (ISSR) polymorphism for detection of sex-specific molecular markers in hop (Humulus lupulus L.) Euphytica 151(1):15–21. https://doi.org/10.1007/s10681-005-9020-4

    Article  CAS  Google Scholar 

  • Dransfield J (1979) A manual of the rattans of the Malay Peninsula. Malayan Forest Rec. no 29, p 270

  • Ehsanpour AA, Tavassoli M, Arab L (2008) Sex determination of Pistacia vera L. using ISSR markers. Malays Appl Biol 37:25–28

    Google Scholar 

  • Garcia-Fernandez C, Casado MA (2005) Forest recovery in managed agroforestry systems: the case of benzoin and rattan gardens in Indonesia. For Ecol Manag 214(1–3):158–169. https://doi.org/10.1016/j.foreco.2005.04.013

    Article  Google Scholar 

  • Govaerts R, Dransfield J, Zona SF et al (2013) World checklist of Arecaceae. Facilitated by the Royal Botanic Gardens, Kew

    Google Scholar 

  • Grewal A, Goyat S (2015) Marker assisted sex differentiation in dioecious plants. J Pharm Res 9:531–549

    Google Scholar 

  • Hartwell JL (1970) Plants used against cancer. Lloydia 33:315–318

    Google Scholar 

  • Harvey CF, Gill GP, Fraser LG, McNeilage MA (1997) Sex determination in Actinidia. 1. Sex-linked markers and progeny sex ratio in diploid A. chinensis. Sex Plant Reprod 10(3):149–154. https://doi.org/10.1007/s004970050082

    Article  Google Scholar 

  • Hosseinzadeh-Colagar A, Haghighatnia MJ, Amiri Z, Mohadjerani M, Tafrihi M (2016) Microsatellite (SSR) amplification by PCR usually led to polymorphic bands: evidence which shows replication slippage occurs in extend or nascent DNA strands. Mol Biol Res Commun 5(3):167–174

    PubMed  PubMed Central  Google Scholar 

  • INBAR (2013) INBAR annual report 2013. International network for bamboo and rattan (INBAR)

  • Indira EP, Anto PV (2002) Karyotype analysis in Calamus palustris Griff. J Bamboo Ratt 1(3):199–203. https://doi.org/10.1163/156915902760184268

    Article  Google Scholar 

  • Jakse J, Stajner N, Kozjak P, Cerenak A, Javornik B (2008) Trinucleotide microsatellite repeat is tightly linked to male sex in hop (Humulus lupulus L.) Mol Breed 21(2):139–148. https://doi.org/10.1007/s11032-007-9114-x

    Article  CAS  Google Scholar 

  • Jiang C, Sink KC (1997) RAPD and SCAR markers linked to the sex expression locus M in asparagus. Euphytica 94(3):329–333. https://doi.org/10.1023/A:1002958007407

    Article  CAS  Google Scholar 

  • Khadke GN, Himabindu K, Ravishankar KV (2012) Development of SCAR marker for sex determination in dioecious betelvine (Piper betle L.) Curr Sci 103:712–716

    CAS  Google Scholar 

  • Korpelainen H, Bisang I, Hedenäs L, Kolehmainen J (2008) The first sex-508 specific molecular marker discovered in the moss Pseudocalliergon trifarium. J Hered 99(6):581–587. https://doi.org/10.1093/jhered/esn036

    Article  CAS  PubMed  Google Scholar 

  • Lakshmana AC (1993) Rattans of South India. Evergreen Publishers, Bangalore

    Google Scholar 

  • Lemos EGM, Silva CLSP, Zaidan HA (2002) Identification of sex in Carica papaya L. using RAPD markers. Euphytica 127(2):179–184. https://doi.org/10.1023/A:1020269727772

    Article  CAS  Google Scholar 

  • Li M, Yang H, Li F, Yang F, Yin G, Gan S (2010) A male-specific SCAR marker in Calamus simplicifolius: a dioecious rattan species endemic to China. Mol Breed 25(3):549–551. https://doi.org/10.1007/s11032-009-9349-9

    Article  CAS  Google Scholar 

  • Márton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198. doi: https://doi.org/10.1016/j.cub.2012.04.061

  • Maryam JMJ, Awan FS et al (2016) Development of molecular method for sex identification in date palm (Phoenix dactylifera L.) plantlets using novel sex-linked microsatellite markers. 3 Biotech 6(1):22. https://doi.org/10.1007/s13205-015-0321-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Kawano S (2001) Sex determination by sex chromosomes in dioecious plants. Plant Biol 3(5):481–488. https://doi.org/10.1055/s-2001-17735

    Article  Google Scholar 

  • Milewicz M, Sawicki J (2013) Sex-linked markers in dioecious plants. Plant Omics 6:144–149

    Google Scholar 

  • Ming R, Wang J, Moore PH, Paterson AH (2007) Sex chromosomes in flowering plants. Am J Bot 94(2):141–150. https://doi.org/10.3732/ajb.94.2.141

    Article  PubMed  Google Scholar 

  • Mohan RHY, Tandon R (1997) Bamboo and rattans: from riches to rags. Proc Indian Natl Sci Acad 63:245–267

    Google Scholar 

  • Muraleedharan PK, Jayashankar B, Rugmini P (1996) Some economic aspects of cane harvesting in Kerala. J non-timber For Prod 3:202–207

    Google Scholar 

  • Nadarajah K, Choong CY, Leong SJ, Wickneswari R (2009) Functional prediction of Calamus manan inflorescence ESTs through motif detection. Biotechnology 8(3):329–342. https://doi.org/10.3923/biotech.2009.329.342

    Article  CAS  Google Scholar 

  • Nadot S, Alapetite E, Baker WJ, Tregear JW, Barfod AS (2016) The palm family (Arecaceae): a microcosm of sexual system evolution. Bot J Linn Soc 182(2):376–388. https://doi.org/10.1111/boj.12440

    Article  Google Scholar 

  • Nageswara Rao M, Ramesha BT, Ravikanth G et al (2007) Cross-species amplification of coconut micro-satellite markers in rattans. Silvae Genet 56:282

    Google Scholar 

  • Nanda S, Kar B, Nayak S, Jha S, Joshi RK (2013) Development of an ISSR based STS markers for sex identification in pointed gourd (Trichosanthes dioica Roxb.) Sci Hort 150:11–15. https://doi.org/10.1016/j.scienta.2012.11.009

    Article  CAS  Google Scholar 

  • Ng CY, Wickneswari R, Choong CY (2014) Identification of floral genes for sex determination in Calamus palustris Griff. by using suppression subtractive hybridization. Genet Mol Res 13(3):6037–6049. https://doi.org/10.4238/2014.August.7.18

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85(8):985–993. https://doi.org/10.1007/BF00215038

    Article  CAS  PubMed  Google Scholar 

  • Parasnis AS, Ramakrishna W, Chowdari KV, Gupta VS, Ranjekar PK (1999) Microsatellite (GATA)n reveals sex-specific differences in papaya. Theor Appl Genet 99(6):1047–1052. https://doi.org/10.1007/s001220051413

    Article  CAS  Google Scholar 

  • Parrish TL, Koelewijn HP, van Dijk PJ (2004) Identification of a male-specific AFLP marker in a functionally dioecious fig, Ficus fulva Reinw. ex Bl. (Moraceae). Sex Plant Reprod 17(1):17–22. https://doi.org/10.1007/s00497-004-0208-x

    Article  CAS  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (1999) Identification and characterisation of microsatellite loci in coconut (Cocos nucifera) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8(2):344–346

    CAS  PubMed  Google Scholar 

  • Raja Barizan RS (1992) Phenology of rattans. In: Wan Mohd WR, Dransfield J, Manokaran N (eds) A guide to the cultivation of rattan. Malayan forest record no. 35. Forest Research Institute Malaysia, Kuala Lumpur, pp 39–46

  • Ravikanth G, Ganeshaiah KN, Uma Shaanker R, Shaanker RU (2001) Mapping genetic diversity of rattans in the Central Western Ghats: identification of hot-spots of variability for in-situ conservation. In: Uma Shaanker R, Ganeshaiah KN, Bawa KS (eds) Forest genetic resources: status, threats and conservation strategies. Science Publishers, Enfield, pp 69–83

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82(5):596–606. https://doi.org/10.2307/2445418

    Article  Google Scholar 

  • Renuka C (1992) Rattans of Western Ghats—a taxonomic manual. Kerala Forest Research Institute, Peechi, Thrissur

    Google Scholar 

  • Sarmah P, Barua VJ, Nath J, Sarma RN, Kurian B, Hemanthkumar AS, Sabu KK (2016) ISSR and SSR markers reveal sex-specific DNA sequences in three Calamus species from India. Agrofor Syst 91(3):1–5. https://doi.org/10.1007/s10457-016-9952-9

    Google Scholar 

  • Sarmah P, Sarma RN (2011) Identification of a DNA marker linked to sex determination in Calamus tenuis Roxb., an economically important rattan species in northeast India. Mol Breed 27(1):115–118. https://doi.org/10.1007/s11032-010-9510-5

    Article  Google Scholar 

  • Sinha P, Nanda S, Joshi RK, Panda PC (2017) Development of a sequence-tagged site (STS) marker for sex identification in the dioecious rattan species Calamus guruba Buch.-Ham. Mol Breed 37(3). https://doi.org/10.1007/s11032-017-0630-z

  • Song BK, Nadarajah K, Wickneswari R (2007) A non-redundant strategy for identification of a minimum tiling path BAC contig spanning approximately 390 kb of the QTL yld1.1 in Oryza rufipogon. Korean J Genet 29:447–458

    CAS  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3(2):137–144. https://doi.org/10.1038/nrg733

    Article  CAS  PubMed  Google Scholar 

  • Sztuba-Solinska J (2005) Molecular markers systems and their application in plant breeding. Kosmos 54:227–239

    CAS  Google Scholar 

  • Takeuchi H, Higashiyama T (2012) A species-specific cluster of Defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10(12):e1001449. https://doi.org/10.1371/journal.pbio.1001449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267(22):15301–15309

    CAS  PubMed  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216(2):193–202. https://doi.org/10.1007/s00425-002-0902-6

  • UmaShankar R, Ganeshaiah K, Srinivasan K et al (2004) Bamboos and Rattans of the Western Ghats: Population Biology, Socio-economics and Conservation Strategies. Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore

    Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20(9):432–438. https://doi.org/10.1016/j.tig.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  • Wang K-L, Xie J, Zhang T, Gu Z-J (2005) A karyological study of four species in Calamus (Palmae: Calamoideae). Acta Bot Yunnan 27:87–91

    Google Scholar 

  • Yang H, Gan S-M, Yin H-T, Xu H-C (2005) Identification of random amplified polymorphic DNA markers linked to sex determination in Calamus simplicifolius C. F Wei J Integr Plant Biol 47(10):1249–1253. https://doi.org/10.1111/j.1744-7909.2005.00113.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial help received from the Kerala State Council for Science, Technology and Environment (KSCSTE), Thiruvananthapuram (order no. 234/KBC/2012/KSCSTE) for this work. We extend our sincere thanks to Director, JNTBGRI for providing necessary facilities. We also extend our special thanks to Kerala State Forest Department for granting permission to collect leaf samples of the rattan species from various forest regions (order no. WL 10-3053/2012). The authors express their gratitude to Mr. Shefeek S. for assistance during plant collection trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Sabu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

All the DNA sequences generated in the study were deposited in NCBI GenBank under accession numbers KX495760.1, KX495761.1, and KX495762.1 and submission ids MF686043 to MF686048.

Additional information

Communicated by W. Ratnam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurian, B., Hemanthakumar, A., Jacob, J. et al. Rapidly evolving sex-specific sequences in Calamus travancoricus Bedd. ex. Becc. and Calamus nagbettai R.R.Fernald & Dey. Tree Genetics & Genomes 14, 11 (2018). https://doi.org/10.1007/s11295-017-1220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1220-2

Keywords

Navigation