Skip to main content

Advertisement

Log in

Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

We investigated the impact of past changes in habitat suitability on the current patterns of genetic diversity of two southern beeches (Nothofagus nervosa and Nothofagus obliqua) in their eastern fragmented range in Patagonian Argentina, and model likely future threats to their population genetic structure. Our goal was to develop a spatially-explicit strategy for guiding conservation and management interventions in light of climate change. We combined suitability modelling under current, past (Last Glacial Maximum ~ 21,000 bp), and future (2050s) climatic conditions with genetic characterization data based on chloroplast DNA, isozymes, and microsatellites. We show the complementary usefulness of the distribution of chloroplast haplotypes and locally common allelic richness calculated from microsatellite data for identifying the locations of putative glacial refugia. Our findings suggest that contemporary hotspots of genetic diversity correspond to convergence zones of different expansion routes, most likely as a consequence of admixture processes. Future suitability predictions suggest that climate change might differentially affect both species. All genetically most diverse populations of N. nervosa and several of N. obliqua are located in areas that may be most severely impacted by climate change, calling for forward-looking conservation interventions. We propose a practical spatially- explicit strategy to target conservation interventions distinguishing priority populations for (1) in situ conservation (hotspots of genetic diversity likely to remain suitable under climate change), (2) ex situ conservation in areas where high genetic diversity overlaps with high likelihood of drastic climate change, (3) vulnerable populations (areas expected to be negatively affected by climate change), and (4) potential expansion areas under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol Phylogenet Evol 54:235–242

    Article  PubMed  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfaro RI et al (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87. https://doi.org/10.1016/j.foreco.2014.04.006

    Article  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci U S A 95:14839–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P (2010) High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Mol Phylogenet Evol 54:941–949

    Article  CAS  PubMed  Google Scholar 

  • Arana MV, Gonzalez-Polo M, Martinez-Meier A, Gallo LA, Benech-Arnold RL, Sánchez RA, Batla D (2016) Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia. New Phytol 209:507–520

    Article  CAS  PubMed  Google Scholar 

  • Azpilicueta MM, Gallo LA (2009) Shaping forces modelling genetic variation patterns in the naturally fragmented forests of a South-American Beech. Biochem Syst Ecol 37:290–297

    Article  CAS  Google Scholar 

  • Azpilicueta MM, Gallo LA, Van Zonneveld M, Thomas E, Moreno C, Marchelli P (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424

    Article  Google Scholar 

  • Azpilicueta MM, Marchelli P, Gallo LA (2009) The effects of Quaternary glaciations in Patagonia as evidenced by chloroplast DNA phylogeography of Southern beech Nothofagus obliqua. Tree Genet Genomes 5:561–571

    Article  Google Scholar 

  • Azpilicueta MM, Pastorino MJ, Puntieri J, Barbero F, Martinez-Meier A, Marchelli P, Gallo LA (2014) Robles in Lagunas de Epulauquen, Argentina: previous and recent evidence of their distinctive character. Rev Chil Hist Nat 87:24–36

    Article  Google Scholar 

  • Becker M et al (2013) Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat Clim Change 3:1039–1043. https://doi.org/10.1038/nclimate2027

    Article  Google Scholar 

  • Braconnot P et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277

    Article  Google Scholar 

  • Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonian region in southern South America. Atmósfera 21:303–317

    Google Scholar 

  • Compagnucci RH (2011) Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios. Biol J Linn Soc 103:229–249

    Article  Google Scholar 

  • Crego P (1999) Variación genética en el comportamiento fenológico y el crecimiento juvenil de progeniespuras e híbridas de raulí, Nothofagus nervosa (Phil.) Dim. et Mil. Licenciatura en Ciencias Biológicas, Universidad Nacional del Comahue

  • Chauchard L, Bava JO, Castañeda S, Laclau P, Loguercio GA, Pantaenius P, Rusch VE (2012) Manual para las buenas prácticas forestales e bosques nativos de Nordpatagonia. Ministerio de Agricultura, Ganadería y Pesca, Presidencia de la Nación Argentina,

  • Donoso C (1993) Bosques templados de Chile y Argentina. Variación, Estructura y Dinámica. Ecología Forestal. Editorial Universitaria, Chile

    Google Scholar 

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Chang Biol 17:1022–1035

    Article  Google Scholar 

  • Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16:927–939

    Article  Google Scholar 

  • FAO, IIASA, ISRIC, ISS-CAS, JRC (2012) Harmonized World Soil Database (version 1.2). FAO, Rome/IIASA, Luxemburg

    Google Scholar 

  • Fisichelli NA, Frelich LE, Reich PB (2013) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography 37:152–161

    Article  Google Scholar 

  • Folguera A et al (2011) A review of Late Cretaceous to Quaternary palaeogeography of the southern Andes. Biol J Linn Soc 103:250–268

    Article  Google Scholar 

  • Frankel OH, Brown AHD, Bordon J (1995) The genetic diversity of wild plants. In: Frankel OH, Brown AHD, Bordon J (eds) The conservation of plant biodiversity. Cambridge University Press, Cambrige, pp 10–38

    Google Scholar 

  • Gallo LA, Marchelli P, Breitembacher A (1997) Morphological and allozymic evidence of natural hibridization between two southern beeches (Nothofagus spp.) and its relation to heterozygosity and height growth. For Genet 4:15–23

    Google Scholar 

  • Gallo LA, Marchelli P, Crego P et al (2000) Distribución y variación genética en características seminales y adaptativas de poblaciones y progenies de raulí en Argentina. In: Domesticación y Mejora Genética de raulí y roble. Universidad Austral de Chile-Instituto Forestal, Valdivia, pp 133–156

  • Gallo LA, Marchelli P, Chauchard L, Penalba MG (2009) Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests. Conserv Biol 23:895–898

    Article  PubMed  Google Scholar 

  • Galluzzi, G, Dufour, D, Thomas, E, van Zonneveld, M, Escobar Salamanca, A.F., Giraldo Toro, A, Rivera, A, Salazar Duque, H, Suárez Baron, H, Gallego, G, Scheldeman, X, Gonzalez Mejia, Alonso. (2015). An Integrated Hypothesis on the Domestication of Bactris gasipaes. PLoS One, 10(12), e0144644. https//doi.org/10.1371/journal.pone.0144644

  • Gillingham P, Huntley B, Kunin W, Thomas C (2012) The effect of spatial resolution on projected responses to climate warming. Divers Disrtrib 18:990–1000

    Article  Google Scholar 

  • Guisan A et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future annual review of ecology. Evol Syst 42:313–333

    Article  Google Scholar 

  • Hampe A, Pemonge MH, Petit RJ (2013) Efficient mitigation of founder effects during the establishment of a leadingedge oak population. Proc R Soc Lond Ser B Biol Sci 280:20131070

    Article  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335

    Article  Google Scholar 

  • Heenan PB, Smissen RD (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146:1–31

    Article  Google Scholar 

  • Heusser CJ (1984) Late-glacial-Holocene climate of Lake District of Chile. Quat Res 22:77–90

    Article  Google Scholar 

  • Heusser CJ, Lowell TV, Heusser LE, Hauser A, Björn G (1996) Full-glacial-late-glacial paleoclimate of the Southern Andes: evidence from pollen, beetle and glacial records. J Quat Sci 11:173–184

    Article  Google Scholar 

  • Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688

    Article  PubMed  Google Scholar 

  • Hill RS, Jordan GJ, Macphail MK (2015) Why we should retain Nothofagus sensu lato. Aust Syst Bot 28:190–193

    Article  Google Scholar 

  • Iglesias V, Whitlock C, Markgraf V, Bianchi MM (2014) Postglacial history of the Patagonian forest/steppe ecotone (41°43′S). Quat Sci Rev 94:120–135

    Article  Google Scholar 

  • Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Evol Syst 33:741–777

    Article  Google Scholar 

  • Jump AS, Marchant R, Peñuelas J (2008) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58

    Article  PubMed  Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494

    Article  PubMed  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Lexer C, Heinze B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp). For Ecol Manage 197:49–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd AH, Bunn AG, Berner L (2011) A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Glob Chang Biol 17:1935–1945

    Article  Google Scholar 

  • Magri D et al (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    Article  CAS  PubMed  Google Scholar 

  • Marchelli P, Baier C, Mengel C, Ziegenhagen B, Gallo L (2010) Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conservation Genetics 11:951–963

    Article  Google Scholar 

  • Marchelli P, Gallo L (2006) Multiple ice-age refugia in a southern beech from southern South America as revealed by chloroplast DNA markers. Conserv Genet 7:591–603

    Article  Google Scholar 

  • Marchelli P, Gallo L, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers revealed a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646

    Article  CAS  Google Scholar 

  • Marchelli P, Gallo LA (2004) The role of glaciation, fragmentation and hybridization in shaping the distribution of the genetic variation in a Patagonian southern beech. J Biogeogr 31:451–460

    Article  Google Scholar 

  • Marchelli P, Smouse P, Gallo L (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.) Tree Genet Genomes 8:1123–1134

    Article  Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, Lascano ME, Delgado S, Stepanek P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob Planet Chang 60:85–100

    Article  Google Scholar 

  • Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol Ecol 19:371–385

    Article  CAS  PubMed  Google Scholar 

  • Moreno P (1997) Vegetation and climate near Lago llanquihue in the Chilean Lake district between 20200 and 9500 14 C yr BP. J Quat Sci 12:485–500

    Article  Google Scholar 

  • Moreno PI, Lowell TV, Jacobson GL Jr, Denton GH (1999) Abrupt vegetation and climate changes during the Last Glacial Maximum and last termination in the Chilean Lake District: a case study from Canal De La Puntilla (41°S). Geogr Ann Ser A, Phys Geogr 81:285–311

    Article  Google Scholar 

  • Oliver T et al (2012) Population density but not stability can be predicted from species distribution models. J Appl Ecol 49:581–590

    Article  Google Scholar 

  • Pacifici M et al (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Petit JR, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Petit JR, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footsprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A 94:9996–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit RJ et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Hu FS, Dick CW (2008) Forests of the past: a window to future changes. Science 320:1450–1452

    Article  CAS  PubMed  Google Scholar 

  • Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity—I. Haploid locus. Theor Appl Genet 90:462–470

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio ME, Volkheimer W, Borrromei ANAM, MartÍNez MA (2011) Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: a review. Biol J Linn Soc 103:380–396

    Article  Google Scholar 

  • Ramirez-Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the Delta method. Decision and policy analysis working paper no. 1. In: (CIAT). CIdAT (ed)

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–252

    Article  PubMed  Google Scholar 

  • Rieseberg LH et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rusch V, Vila A and Marqués B (2008) Conservación de la biodiversidad en sistemas productivos. Forestaciones del Noroeste de la Patagonia. Ed. INTA, Bariloche, Argentina 89pp

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. Am Meteorol Soc 17:4099–4107

    Google Scholar 

  • Sabatier Y et al (2011) Distribución natural de Nothofagus alpina y Nothofagus obliqua (Nothofagaceae) en Argentina, dos especies de primera importancia forestal de los bosques templados norpatagónicos. Boletin Sociedad Argentina Botanica 46:131–138

    Google Scholar 

  • Seo C, Thorne J, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43

    Article  PubMed  Google Scholar 

  • Sérsic AN et al (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 103:475–494

    Article  Google Scholar 

  • Sola G, Attis Beltran H, Chauchard L, Gallo LA (2015) Efecto del manejo silvicultural sobre la regeneración de un bosque de Nothofagus dombeyi. N alpina y N obliqua en la Reserva Nacional Lanín (Argentina) Bosque 36:113–120

    Google Scholar 

  • Sola G, El Mujtar V, Tsuda Y, Vendramin GG, Gallo L (2016) The effect of silvicultural management on the genetic diversity of a mixed Nothofagus forest in Lanín Natural Reserve, Argentina. For Ecol Manage 363:11–20

    Article  Google Scholar 

  • Soliani C, Gallo LA, Marchelli P (2012) Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genet Genomes 8:659–673

    Article  Google Scholar 

  • Soliani C, Tsuda Y, Bagnoli F, Gallo L, Vendramin GG, Marchelli P (2015) Halfway encounters: meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol Phylogenet Evol 85:197–207

    Article  PubMed  Google Scholar 

  • Souto CP, Mathiasen P, Acosta MC, Quiroga MP, Vidal-Russell R, Echeverria C, Premoli AC (2015) Identifying genetic hotspots by mapping molecular diversity of widespread trees: when commonness matters. J Hered 106:537–545

    Article  PubMed  Google Scholar 

  • Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–1034

    Article  Google Scholar 

  • Thomas E et al (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75

    Article  Google Scholar 

  • Thomas E, van Zonneveld M, Loo J, Hodgkin T, Galluzzi G, van Etten J (2012) Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One 7:e47676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, E., Alcázar Caicedo, C., McMichael, C.H., Corvera, R. , & Loo, J. (2015). Uncovering spatial patterns in the natural and human history of Brazil nut ( Bertholletia excelsa ) across the Amazon Basin. Journal of Biogeography, 42, 1367–1382

  • Thomas, E., Gil Tobón, C., Gutierrez, J.P., Alcazar Caicedo, C., Moscoso Higuita, L.G., Becerra, L.A., Loo, J., Gonzales, M.A. (2017) Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodiversity & Conservation 26, 825–842

  • Van Zonneveld M, Dawson L, Thomas E, Scheldeman X, Van Etten J, Loo J, Hormaza JI (2014) Application of molecular markers in spatial analysis to optimize in situ conservation of plant genetic resources. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer Science+Business Media, Dordrecht, pp 67–91

    Chapter  Google Scholar 

  • Van Zonneveld M, Jarvis A, Dvorak WS, Lema G, Leibing C (2009) Climate change impact predictions on Pinus patula and Pinus tecunumanii populations in Mexico and Central America. For Ecol Manag 257:1566–1576

    Article  Google Scholar 

  • van Zonneveld M et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS One 7:e29845

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela S, Gyenge JE, Fernandez ME (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453

    Article  Google Scholar 

  • Waltari, E., Hijmans, R.J., Peterson, A.T., Nyári, A.S., Perkins, S.L., & Guralnick, R.P. (2007). Locating Pleistoce refugia: comparing phylogeographic and ecological niche models predictions. PLoS One, 2(7), e563

  • Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6:e325

    Article  PubMed Central  Google Scholar 

  • Worth JRP, Harrison PA, Williamson GJ, Jordan GJ (2014) Whole range and regional-based ecological niche models predict differing exposure to 21st century climate change in the key cool temperate rainforest tree southern beech (Nothofagus cunninghamii). Austral Ecol 40:126–138

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Martínez, M. Huentú, F. Barbero, M. Pastorino, A. Aparicio, and S. Zuki for helping in the collection of the vegetative material and to C. Moreno for laboratory assistance. Genotypes at Quilanlahue population were gently provided by G. Sola. Sampling of Nothofagus species in National Parks was authorized by the INTA-APN collaboration agreement. This research has been supported by the INIA—Spain financed project “Strengthening Regional Collaboration in Conservation and Sustainable Use of Forest Genetic Resources in Latin America and Sub-Saharan Africa” within the context of MAPFORGEN, by INTA (PNFOR 1104063 and 1104064) and by PIP11220110100891 CONICET, Argentina.

Funding

We thank the CGIAR program on Forests Trees and Agroforestry for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marchelli.

Ethics declarations

Data archiving statement

Genotypic data for the three genetic markers are provided as supplementary material (Table S3).

Additional information

Communicated by D. B. Neale

Electronic supplementary material

Additional Supporting Information may be found in the online version of this article:

ESM 1

(DOCX 8.52 mb)

ESM 2

(XLSX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchelli, P., Thomas, E., Azpilicueta, M.M. et al. Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genetics & Genomes 13, 119 (2017). https://doi.org/10.1007/s11295-017-1201-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1201-5

Keywords

Navigation